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ABSTRACT

This article presents OptionMC, a Python package designed for
educational purposes that implements Monte Carlo methods for European
option pricing. We describe the package's architecture and demonstrate
its application through systematic testing against established Black-
Scholes analytical solutions. The implementation supports both standard

Monte Carlo estimation and variance reduction via antithetic variates,
allowing examination of convergence patterns and computational

Keywords efficiency. Our results suggest that Monte Carlo estimates converge
Antithetic variates toward analytical solutions as the number of iterations increases, with
Financial derivatives convergence behavior generally consistent with theoretical expectations.
Monte Carlo methods Analysis of parameter sensitivity indicates the package appropriately
Option pricing captures fundamental pricing relationships, including volatility effects,
Stochastic simulation time decay, and moneyness considerations. The distributional

characteristics of simulated stock prices and option payoffs align
reasonably well with theoretical predictions. While OptionMC primarily
serves pedagogical objectives rather than high-performance applications,
it offers a transparent framework that may benefit students and
researchers seeking to understand the practical implementation of option
pricing algorithms through Monte Carlo techniques.

This is an open access article under the CC—BY-SA license.

1. Introduction

Financial derivatives have become increasingly important in modern financial markets, with options
contracts constituting one of their most essential and widely traded forms. These sophisticated
instruments enable participants to hedge against unfavorable price movements, speculate on
directional market shifts, and construct complex trading strategies with asymmetric risk-return
profiles [1]. The accurate valuation of such contracts is central to virtually all financial operations,
from risk management and regulatory reporting to portfolio optimization and algorithmic trading [2].
In this context, computational methods for option pricing have undergone significant evolution over
the past several decades, with Monte Carlo simulation establishing itself as one of the most flexible
and widely applicable approaches for handling complex derivative instruments [3], [4].

The foundations of modern option pricing theory were established in 1973 with the publication of
two landmark papers. Black and Scholes [5] proposed their eponymous partial differential equation
model for European option valuation, while Merton [6] extended this framework to incorporate
dividend payments and developed the theory of rational option pricing. Their collective work
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revolutionized financial markets by establishing a rigorous mathematical approach to derivative
pricing based on no-arbitrage principles, thereby transforming options from speculative vehicles into
precisely valued financial instruments. This breakthrough earned Scholes and Merton the 1997 Nobel
Prize in Economics, with Black being acknowledged posthumously.

Despite its theoretical elegance and computational efficiency, the Black-Scholes framework suffers
from well-documented shortcomings when applied to real-world market conditions. The model's
assumptions of constant volatility, log-normal distribution of returns, continuous trading, perfect
liquidity, and zero transaction costs rarely hold in practice [4], [7]. These limitations manifest most
acutely during periods of market stress, when implied volatilities often exhibit pronounced skewness
(smiles) and return distributions exhibit fatter tails than those predicted by a normal distribution.
More complex features, such as path dependence, multiple underlying assets, or early exercise rights,
further complicate analytical solutions, necessitating more flexible numerical approaches.

Among these numerical methods, Monte Carlo simulation has emerged as particularly valuable,
offering unparalleled versatility in handling complex derivative structures. First applied to option
pricing by Boyle et al. [3], this technique enables the valuation of instruments where closed-form
solutions are unavailable or unwieldy. The fundamental approach involves generating numerous
random price trajectories for the underlying asset under a specified stochastic process, computing the
option payoff for each path, and then averaging the discounted payoffs to estimate the option's value.
The methodology's greatest strength lies in its ability to accommodate virtually any payoff structure
or price process, including jumps, stochastic volatility, or mean reversion, making it indispensable
for pricing exotic and path-dependent options [4], [8].

The conceptual simplicity of Monte Carlo methods, however, belies significant practical challenges
in their implementation. Principal among these is computational efficiency, as the standard error of
Monte Carlo estimators decreases at a rate proportional to the square root of the number of
simulations. Consequently, achieving a tenfold improvement in precision requires a hundredfold
increase in the simulation budget, imposing substantial computational demands for high-accuracy
valuations [9]. This inherent limitation has spurred extensive research into variance reduction
techniques, which aim to enhance estimation efficiency without proportionally increasing
computational cost. These methods exploit analytical information or statistical properties of the
simulation to reduce variability in the estimator, thereby achieving greater precision with fewer
simulations [4], [7].

Among these variance-reduction approaches, antithetic variates warrant particular attention for their
exceptional combination of simplicity and effectiveness. This technique involves generating
negatively correlated pairs of sample paths by using the negative of each random shock alongside
the original drawing. When the payoff function is monotonic or nearly so with respect to these
shocks, the resulting negative correlation between path pairs reduces the estimator's overall variance.
Despite its straightforward implementation, antithetic sampling often yields substantial efficiency
gains, reducing the number of simulations required by factors of 2 to 5 without significantly
increasing per-path computational complexity [4], [10]. While more sophisticated techniques, such
as control variates or importance sampling, can achieve greater variance reduction in specific
contexts, antithetic variates remain widely used due to their robust performance across diverse option
types and minimal additional implementation complexity [7].

Recent years have witnessed substantial advances in the computational infrastructure supporting
Monte Carlo methods in finance. Xiong et al. [11] has demonstrated significant efficiency
improvements through distributed computing architectures applied to Least Squares Monte Carlo
methods for American option pricing. These approaches decompose the high-dimensional simulation
problem into more manageable subproblems that can be solved in parallel, effectively leveraging
modern multi-processor systems. Even more dramatic innovations are emerging at the intersection
of quantum computing and computational finance, where Rebentrost et al. [12] have proposed
quantum algorithms for Monte Carlo pricing that theoretically offer quadratic speedups relative to
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classical methods. While practical implementation of quantum advantage remains on the horizon,
these developments highlight the continuing evolution of computational methods for option pricing.

The pedagogical dimension of option pricing methodology warrants particular consideration.
Financial engineering and computational finance curricula increasingly emphasize hands-on
implementation of pricing models alongside theoretical foundations, reflecting the practical
orientation of these disciplines [2]. Interactive computational tools have demonstrated significant
efficacy in enhancing students' comprehension of complex financial concepts, enabling
experimentation with parameter values and direct observation of their effects on pricing outputs [13].
Among programming environments, Python has emerged as an especially valuable platform for
financial education due to its readable syntax, extensive mathematical libraries, and visualization
capabilities, which lower barriers to learning complex concepts [14], [15]. Despite being a high-level
language, Python's scientific computing stack, powered by optimized libraries such as NumPy,
SciPy, and Numba, delivers competitive performance for numerical tasks, often rivalling languages
such as C++ or Java when leveraging vectorized operations or parallel processing [16], [17], [18],
[19]. Additionally, Python’s rich ecosystem (e.g., pandas for data manipulation, Matplotlib/Plotly
for visualization, and Jupyter for interactive workflows) and seamless integration with tools such as
TensorFlow and QuantLib make it a versatile, end-to-end solution for both educational and real-
world financial modeling [20], [21].

This pedagogical imperative aligns with a broader movement toward open-source financial software
development within both academic and industry contexts. Such initiatives democratize access to
sophisticated pricing methodologies, enabling broader adoption across educational institutions and
smaller financial firms that might otherwise lack resources for proprietary trading systems [22].
Beyond mere accessibility, open-source implementations foster reproducible research and facilitate
rigorous validation of pricing approaches across diverse market conditions. The transparency
inherent in open-source development allows practitioners to inspect algorithms directly, enhancing
trust in computational outcomes and enabling customization for specific requirements [13].

The proliferation of option pricing libraries has not, however, uniformly addressed the need for
implementations that balance educational clarity with computational rigor. Many existing packages
prioritize performance at the expense of intelligibility, implementing optimization techniques that
obscure the fundamental algorithms. Others focus on breadth of functionality rather than depth of
exposition, providing cursory implementations of numerous pricing methods without illuminating
their mathematical foundations or computational nuances. The academic literature increasingly
recognizes this tension between efficiency and transparency, with several authors advocating for
implementations that serve both pedagogical and practical purposes [13], [23].

In response to these considerations, we introduce OptionMC, a Python package for European option
pricing via Monte Carlo simulation. The package implements both standard Monte Carlo estimation
and variance-reduced simulation using antithetic variates, with all implementations accompanied by
comprehensive documentation explaining the mathematical foundations and computational design
choices. Beyond merely calculating point estimates, OptionMC provides extensive visualization
tools for exploring convergence behavior, parameter sensitivity, and the distribution of option
payoffs. Comparisons with Black-Scholes analytical solutions are integrated throughout, enabling
direct assessment of numerical accuracy for standard options while illuminating the flexibility of
simulation methods for more complex structures.

Unlike packages that emphasize raw performance or algorithmic sophistication, OptionMC
deliberately prioritizes educational value and implementation clarity, making it particularly suitable
for teaching and research environments. The code structure reflects the mathematical structure of the
underlying models, with a clear separation between simulating the price process and calculating
payoffs and applying variance-reduction techniques. This modular design facilitates both conceptual
understanding and practical experimentation, allowing users to modify individual components while
preserving overall functionality. Through this approach, OptionMC addresses the gap between
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theoretical exposition and practical implementation that often challenges students and researchers in
quantitative finance.

2, Methods
2.1 Black-Scholes Model for European Options

The Black-Scholes option pricing model represents a cornerstone of modern financial theory,
originating from the seminal work of Black and Scholes [5] and Merton [6]. The model rests upon a
specific set of idealized market conditions: frictionless markets without transaction costs, continuous
trading opportunities, constant risk-free interest rate and volatility, and log-normally distributed asset
prices. These assumptions, while simplifying, permit the derivation of a closed-form solution for
European option valuation that remains fundamental to quantitative finance despite well-documented
limitations [24], [25].

The mathematical foundation begins with a specification of the underlying asset price dynamics.
Under the Black-Scholes framework, the price of the underlying asset S; follows a geometric
Brownian motion, expressed through the stochastic differential equation:

In this formulation, u represents the expected return or drift of the asset, o denotes the volatility or
standard deviation of returns, and W; is a standard Wiener process (Brownian motion). This
particular structure captures the empirically observed behavior that asset returns tend to be generally
distributed while ensuring that prices remain strictly positive [1]. The term uS,;dt represents the
deterministic component of price changes, reflecting the expected growth proportional to the current
price, while ¢S;dW; models the random fluctuations whose magnitude scales with the asset price.

To derive the option pricing equation, we consider a derivative security V (S;, t) whose value depends
on the underlying asset price and time. According to [to's lemma, a fundamental result in stochastic
calculus, the differential of this derivative's value can be expressed as:

dv = aV+ S aV+1 ZSZaZV dt + oS anW )
~\ar THras, T2° 2 Tt gs,

The critical insight of Black, Scholes, and Merton was to construct a risk-free portfolio by combining
the derivative and the underlying asset in specific proportions. This portfolio, denoted II, consists of

. . . . v . . C g
shorting one unit of the derivative and holding 35, units of the underlying asset, yielding a value:
t

Il = V+aVS 3
- aSt t- ()

The change in this portfolio's value over an infinitesimal time period is determined by computing the
differential:

dll = —dV + v ds 4
- aSt t: ( )

Substituting equations (1) and (2) into (4) and collecting terms yields:
dll = 6V+1 2Szazv dt 5)
- \ar 27 2t esz)

The remarkable feature of equation (5) is the absence of the stochastic term dW;, meaning this
portfolio is instantaneously riskless. The fundamental principle of no-arbitrage requires that such a
riskless portfolio must earn precisely the risk-free rate of return, expressed mathematically as:
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all = rildt, (6)

where r represents the constant risk-free interest rate. Combining equations (3), (5), and (6), and
rearranging terms leads to the celebrated Black-Scholes partial differential equation:
A 25262V+ s =0 )
ot " 27 Ptgsz T tes, TV T
This second-order parabolic partial differential equation determines the evolution of any derivative
security's price in the Black-Scholes framework. For European options, the PDE is solved subject to
the appropriate terminal boundary condition. In the case of a European call option, this condition is
V(Sy, T) = max(Sy — K, 0), while for a European put option, it is V(S¢, T) = max(K — S¢,0),
where K represents the strike price and T is the expiration time [4].

The solution to equation (7) with the specified boundary conditions yields the famous Black-Scholes
formulas for European option prices. For a European call option, the price at time t is given by:

C(Sp,t) = S;@(dy) — Ke 7T D (dy). (8)
Similarly, for a European put option, the price is:
P(S;,t) = KeT"T-99(-d,) — S, ®(—d,). )

In these formulas @(.), represents the cumulative distribution function of the standard normal
distribution, and the parameters d; and d, are defined as:

_Inln(S/K) + (r +a?/2)(T - t)
e oVT —t '

The equations (8) and (9) provide a direct and computationally efficient means of pricing European
options. This analytical tractability represents one of the model's most significant advantages and
explains its enduring popularity despite known limitations. The formula can be interpreted
probabilistically: under the risk-neutral measure, @(d, ) represents the probability that the option
expires in the money, while S,®(d;)/Ke T~ ®(d,) gives the conditional expectation of the asset
price at expiration, given that the option expires in-the-money [1].

(10)

Despite its mathematical elegance, the Black-Scholes model exhibits several limitations that stem
from its assumptions. The constant-volatility assumption contradicts empirical observations of
"volatility smiles" and "term structures" in options markets, in which implied volatilities vary with
strike price and time to expiration [26,27]. This phenomenon became particularly pronounced after
the 1987 market crash, which revealed that traders assign higher probabilities to extreme market
movements than the log-normal distribution would suggest [28]. Additionally, the model's
assumption of continuous asset price paths fails to capture sudden jumps observed in practice, leading
to systematic mispricing of deep out-of-the-money options [29].

These limitations have motivated the development of more sophisticated models, including stochastic
volatility models like Heston's [30], implied volatility trees [31,32], and local volatility models [33,34].
Recent empirical research has explored how market dynamics differ across various quantiles of the
price distribution, revealing that price movements in the upper and lower tails exhibit distinct patterns
not captured by the Black-Scholes framework [24]. Moreover, machine learning approaches have
gained traction as alternatives to traditional parametric models, owing to their flexibility in capturing
complex patterns in market data without relying on restrictive assumptions [35].

In the OptionMC package, we implement the Black-Scholes analytical solution in the
bs_analytical_price method of the OptionPricing class. This implementation uses the cumulative
normal distribution function provided by the SciPy library [36] to calculate @(d; ) and ®@(d; )
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efficiently. The analytical solution serves as both a benchmark for evaluating the accuracy of Monte
Carlo simulation results and a demonstration of the foundational theory of option pricing, making it
particularly valuable for educational purposes

Grand Isle is a town in Jefferson Parish, Louisiana, at latitude 29.2366 and longitude -89.9873,
located on a barrier island at the mouth of Barataria Bay where it meets the Gulf of Mexico (Figure
1). According to the U.S. Census Bureau, it covered a total area of 7.8 square miles (20 km2), of
which 6.1 square miles (16 km?2) was land and 1.7 square miles (4.4 km2) was water. Grand Isle has
a humid subtropical climate bordering on a tropical monsoon climate, with mild winters and long,
hot, humid summers. Hurricanes have repeatedly hit it throughout its history. On average, Grand Isle
has been affected by tropical storms or hurricanes every 2.68 years since 1877, with a direct hit on
average every 7.88 years.

2.2 Monte Carlo Implementation for Option Pricing

The Monte Carlo method for option pricing involves simulating numerous random price paths for
the underlying asset, computing the option payoff for each path, and then averaging these payoffs to
estimate the option price. This section details our implementation of both standard Monte Carlo
simulation and the variance reduction technique using antithetic variates in the OptionMC package.

2.2.1 Standard Monte Carlo Simulation

The foundation of Monte Carlo option pricing lies in the risk-neutral valuation principle, which states
that the price of an option equals the expected discounted payoff under the risk-neutral measure. For
European options, this can be expressed mathematically as:

Vo = e "TE?[h(ST)], (12)

where V,, is the option price at time 0,7 is the risk-free interest rate, T is the time to maturity, E©
denotes the expectation under the risk-neutral measure Q, and h(Sy) represents the option payoff
function at maturity [4].

Under the risk-neutral measure, the underlying asset price follows a geometric Brownian motion with
drift equal to the risk-free rate:

dS, = rSedt + aS,dW,2. (13)

where WtQ is a standard Brownian motion under the risk-neutral measure Q. This stochastic
differential equation has an analytical solution given by:

2
Sy = Seexp <<r - %) T+ \/TZ), (14)

where Z ~ N(0,1) is a standard normal random variable [1].
For a European call option with strike price K, the payoff function is:

h(St) = max (St — K, 0). (15)
Similarly, for a European put option, the payoff function is:

h(S7) = max (K — Sr,0). (16)
The Monte Carlo method approximates the expectation in equation (12) by generating n independent

samples of the terminal stock price S;i) using equation (14), calculating the corresponding payoffs

h (S;i)), and then taking their average [3]:
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1 n
— —TT_Z S(l) (17)

n
i=1
Our implementation in the OptionMC package follows this approach. For example, the
call_option_simulation method in the OptionPricing class generates terminal stock prices using
equation (14) and then applies the call option payoff function (15):

Cy=e T max (SP ~K, 0), (18)

3|
INgl

1l
fuy

i

. 2 . .
where S;l) = Spexp <(r - %) T+ 0\/7_"Z(l)> with Z® ~ N(0,1).

Similarly, the put_option_simulation method implements the estimator for put options:

n

P, = e'rT%Z max (K—S;i),O). (19)
=1
The standard error of the Monte Carlo estimator is given by [9]:
Oh
=
where oy, is the standard deviation of the payoff function. This error decreases at a rate proportional

to \/T_l, which means that to reduce the error by a factor of 10, we need to increase the number of
simulations by a factor of 100, making Monte Carlo methods computationally intensive for high-
precision applications [7].

SE(Vp) =e™T—= (20)

2.2.2 Antithetic Variates for Variance Reduction

To improve the efficiency of Monte Carlo simulations, we implement the antithetically varied
technique, a variance reduction method that exploits negative correlation between pairs of sample
paths. The key insight is that if the random variable Z has a symmetric distribution around zero (like
the standard normal distribution), then —Z has the same distribution as Z. For each random draw
Z®, we generate an "antithetic" counterpart —Z®, resulting in pairs of negatively correlated stock
price paths [4].

The terminal stock prices for these antithetic pairs are:

. 0'2 .
S;l) = Spexp <<r - 7) T + a\/TZ(‘)),

(21)
(i o2 .
S = spexp <<r — 7) T+ 0\/7_"(—2(‘)))
The antithetic variates estimator for a call option is then [8]:
1 n
AA _ 1T @ _ s _
Ch=e Z"Z [max (ST K, 0) + max (ST K, 0)]. (22)
i=
Similarly, for a put option:
1 n
A _ ,—1T _c® _ &
Pf=e Z"Z [max (K sS4 ,0) + max (K sS4 ,0)]. (23)
i=
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The variance of the antithetic estimator is [9]:

ar(0) = % ot Var(h(Sr)) + Var (h(st) +2Cov (h(Sy), h(ST)). 24)

Since the payoff functions for both call and put options are monotonic with respect to the terminal
stock price, and the terminal stock prices Sy and St are negatively correlated, the covariance term

Cov (h(ST), h(f T)) is negative. This makes the variance of the antithetic estimator smaller than that

of the standard Monte Carlo estimator, resulting in more accurate price estimates for the same number
of random draws [10].

In our implementation, the antithetic_call_simulation and antithetic_put_simulation methods in the
OptionPricing class generate half the number of random variables compared to the standard methods
but use both the original and negatively signed versions to create a full set of simulations. This
approach is computationally efficient as it requires generating only n/2 random numbers for n price
paths, while potentially achieving a significant reduction in variance [4].

The efficiency gain from antithetic variates can be quantified using the variance reduction ratio:
VRR = ——=~. (25)

Empirical results with our implementation show that antithetic variates typically achieve a VRR
between 2 and 5 for European options, meaning that to achieve the same level of accuracy, the
antithetic method requires 2 to 5 times fewer simulations than the standard method [10].

Furthermore, the confidence intervals for the Monte Carlo estimates can be calculated using the
central limit theorem [4]:

Vo £ 24/2.SE(V), (26)

where 7, is the critical value from the standard normal distribution for a given confidence level

1 — a. In our package, the confidence_intervals method implements this calculation, providing users
with a measure of the precision of the Monte Carlo estimates.

The implementation in OptionMC ensures that all these mathematical principles are applied correctly
while maintaining code clarity for educational purposes. By separating the price process simulation
from the payoff calculation and variance reduction techniques, the package allows users to
understand each component individually and observe how they interact to produce option price
estimates [23].

2.3 Package Demonstration and Applications

The OptionMC package provides tools for option pricing using Monte Carlo simulation. This section
describes the methodological approaches for applying the package in financial analysis and
education.

2.3.1 Basic Option Pricing

The core methodology of OptionMC centers on pricing European options through Monte Carlo
simulation with comparative analysis against analytical Black-Scholes solutions. The
implementation workflow consists of defining option parameters, initializing the pricing model, and
executing the simulation. The OptionPricing class accepts parameters including the initial stock price
(Sp), strike price (K), time to maturity (T), risk-free rate (r), volatility (o), and the number of
simulation iterations.

Our simulation generates random stock price paths under geometric Brownian motion, computes
option payoffs at maturity, and discounts the average to estimate the option price. The package
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provides functionality to retrieve both the simulated stock price paths and corresponding option
payoffs for further analysis.

For visualization, the package provides methods to generate distributions of terminal stock prices
and option payoffs. The OptionVisualizer class handles the creation of these visualizations with
configurable parameters for titles, labels, and output formats.

2.3.2 Variance Reduction Techniques

The package implements variance reduction through the antithetic variates method. The
methodology involves comparing a standard Monte Carlo simulation with the antithetic approach
through parallel implementations in the call_option_simulation and antithetic_call_simulation
methods. To analyze convergence behavior, the package enables systematic testing across varying
iteration counts. The methodology involves tracking option prices, computation times, and relative
errors as the number of iterations increases. The confidence_intervals method provides statistical
bounds on the Monte Carlo estimates based on the central limit theorem. The computational
efficiency comparison methodology measures both the accuracy relative to analytical solutions and
the execution time for each method. This approach enables quantification of the efficiency gains
achieved by variance reduction techniques.

2.3.3 Parameter Sensitivity Analysis

OptionMC provides methodological tools for parameter sensitivity analysis by systematically
varying key inputs. The methodology involves defining a range of values for a specific parameter
(such as volatility, time to maturity, or interest rate), computing option prices for each value while
holding other parameters constant, and analyzing the resulting price patterns. The volatility
sensitivity analysis methodology systematically varies the volatility parameter within a specified
range while holding other inputs constant. The same approach applies to time-to-maturity and interest
rate sensitivity analyses, enabling examination of their respective effects on option valuation. The
package's plot_parameter_sensitivity method generates visualizations of these parameter
relationships, with options to overlay analytical solutions for comparison. The methodology includes
storing all simulation parameters and results in data files, ensuring reproducibility and facilitating
external analysis.

2.3.4 Moneyness and Accuracy Analysis

The package includes a methodology for analyzing how the accuracy of Monte Carlo simulations
varies with option moneyness and iteration count. This approach involves systematically varying the
strike price across a range of values to create options with different moneyness levels (the ratio of
strike price to current stock price). The methodological process involves defining a range of strike
prices and a set of iteration counts, then computing option prices using both Monte Carlo simulation
and analytical solutions for each parameter combination. The relative pricing error is calculated for
each case, allowing for analysis of how accuracy varies across the moneyness spectrum.

To quantify the relationship between accuracy and simulation size, the methodology incorporates
multiple iteration counts for each moneyness level. This approach enables assessment of the
convergence rate as simulation size increases and identification of potential differences in
convergence behavior across moneyness levels. The package provides functions to categorize
options by moneyness (in-the-money, at-the-money, out-of-the-money) and compute summary
statistics for each category. This methodology facilitates structured analysis of the relationship
between option characteristics and simulation accuracy. These methodological approaches
demonstrate how OptionMC can be applied for both educational and analytical purposes in financial
engineering. The package provides systematic frameworks for exploring various aspects of option
pricing theory and the practical considerations of implementing Monte Carlo methods
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3. Results and Discussion

The Monte Carlo convergence analysis for European option pricing demonstrates that price estimates
stabilize as the simulation size increases. As shown in Figure 1, with a small number of iterations
(10%), the Monte Carlo estimate exhibits substantial variability, with a price estimate of
approximately $8.15 and wide 95% confidence intervals spanning from roughly $5.75 to $10.55.
This initial imprecision is a direct consequence of the stochastic nature of the simulation process and
the inherent sampling error with limited data points. The convergence pattern follows the expected
behavior dictated by the central limit theorem, with the estimate approaching the analytical value at
a rate proportional to vn, where n is the number of iterations [9]. At approximately 10 iterations,
the estimate has already improved significantly to around $10.15, with a narrower confidence
interval. Beyond 10* iterations, the Monte Carlo price converges to the analytical Black-Scholes price
of $10.45, with the confidence interval narrowing to less than $0.5. At 10° iterations, the Monte Carlo
price demonstrates excellent agreement with the analytical solution.

$14.00 -

—e— Monte Carlo Estimate
95% Confidence Interval
—=- Black-Scholes Price ($10.45)

$13.00 -
$12.00 -
$11.00 -

$10.00 -

$9.00 -

Option Price [$]

®
g
=)
=)

$7.00 -

$6.00 -

T C T
Number of Iterations

Figure 1. Monte Carlo convergence analysis for European call option pricing. The plot shows the progression
of option price estimates as the number of iterations increases from 107 to 10%, with 95% confidence intervals
(shaded area). The horizontal dashed line represents the analytical Black-Scholes price ($10.45). Parameters:
So = $100, K = $100, T = 1 year, r = 5%, 0 = 20%.

The parameter sensitivity analysis reveals the fundamental relationships that govern option pricing
dynamics. Figure 2 illustrates how option prices respond to changes in volatility, time to maturity,
strike price, and moneyness. Volatility sensitivity (top-left panel) confirms the positive relationship
between volatility and option prices for both calls and puts, with prices increasing monotonically as
volatility rises from 10% to 50%. This relationship stems from the increased probability of beneficial
price movements for option holders in more volatile markets [1]. For an at-the-money option with
one year to maturity, the call price increases from approximately $7.00 at 10% volatility to over
$20.00 at 50% volatility, while put prices show a similar trend from roughly $2.00 to $17.00 over
the same volatility range. The Monte Carlo estimates closely track the analytical solutions throughout
the entire volatility range, with minimal visible discrepancy.

The time sensitivity analysis (top-right panel) reveals distinct patterns for call and put options. Call option
prices increase steadily with longer maturities, from approximately $3.00 at 0.1 years to over $16.00 at
2.0 years. Put options show a more modest increase, from about $2.50 to $6.50 over the same time range,
with a flattening curve beyond one year to maturity. This difference in time sensitivity reflects the
asymmetric effects of time value and discount factors on these instruments [6]. The strike price sensitivity
(bottom-left panel) displays the expected inverse relationship for call options, with prices decreasing from
approximately $33.00 at a strike of $70 to below $2.00 at a strike of $130. Put options exhibit the opposite
trend, increasing from near zero at low strikes to approximately $25.00 at high strikes. This mirrors the
complementary nature of these derivatives and their respective payoff structures.
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Figure 2. Sensitivity analysis of option prices to key parameters. Top left: Sensitivity to volatility (o). Top
right: Sensitivity to time to maturity (T). Bottom left: Sensitivity to strike price (K). Bottom right: Sensitivity
to moneyness (K /S,). Each plot shows both Monte Carlo (MC) and analytical Black-Scholes (BS) results for
call and put options. Base parameters: S, = $100, K = $100, T = 1 year, r = 5%, 0 = 20%.
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Figure 3. Probability distributions from Monte Carlo simulation with 100,000 iterations. Top left: Distribution of
final stock prices showing lognormal characteristics. Top right: Distribution of call option payoffs. Bottom left:
Distribution of option payoffs. Bottom right: Comparison of theoretical lognormal distribution with empirical
simulation results for final stock prices. Parameters: Sy = $100, K = $100, T = 1 year,r = 5%, 0 = 20%.

Sandy H. S. Herho et.al (OptionMC: A Python Package for Monte Carlo Pricing of European Options)



ISSN 2722-2039 International Journal of Data Science 81
Vol. 6, No. 2, December 2025, pp. 70-84

The distributional properties of the Monte Carlo simulation provide insight into the underlying
stochastic processes of option pricing. As illustrated in Figure 3, the final stock price distribution
(top-left panel) exhibits the characteristic lognormal shape predicted by the geometric Brownian
motion model, with a positive skew and a long right tail. The distribution peaks around $100-110,
with the majority of simulated prices falling between $70 and $150, and a maximum frequency of
approximately 2,300 occurrences near the peak. The empirical distribution closely matches the
theoretical lognormal curve (bottom-right panel), confirming the correct implementation of the price
process in the simulation [4].

The payoff distributions for call and put options (top-right and bottom-left panels) reveal highly
asymmetric patterns. The call option payoff distribution shows a significant mass at zero
(approximately 40,000 occurrences), indicating that in these simulations the final stock price falls
below the strike price, resulting in options that expire worthless. The positive tail extends to above
$150, though with rapidly decreasing frequency. The put option distribution shows an even higher
concentration at zero (over 50,000 occurrences), with a much shorter positive tail extending only to
about $60. These distributional characteristics reflect the fundamental asymmetry in option payoff
structures and have important implications for risk management and pricing, particularly for
sophisticated option strategies involving multiple contracts [8].

The variance reduction analysis demonstrates the efficiency improvements achieved through the
antithetic variates technique. Figure 4 provides a direct comparison between the standard Monte
Carlo simulation and the antithetic method across different iteration counts. At lower iteration counts,
both methods show considerable volatility in their estimates. The standard Monte Carlo method starts
at approximately $8.15 after 102 iterations, whereas the antithetic method starts at roughly $10.50.
Both methods exhibit irregular convergence patterns in the 102-103 range, although the antithetic
method generally remains closer to the analytical solution of $10.45 (red dashed line).
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Figure 4. Comparison of standard Monte Carlo and antithetic variates methods. Left: Price convergence toward
the analytical solution ($10.45) as the number of iterations increases. Right: Relative error (logarithmic scale)
showing improved convergence with the antithetic variates technique. Parameters: S, = $100, K = $100,T =
1 year,r = 5%, 0 = 20%.

The error comparison (right panel) illustrates the efficiency advantage of the antithetic variates
method on a logarithmic scale. At 10? iterations, the standard Monte Carlo method exhibits a relative
error exceeding 20%, while the antithetic method shows an error of approximately 0.5%. As
iterations increase, both methods exhibit a decreasing trend in error, though with some fluctuations.
By 107 iterations, both methods achieve high accuracy, with the standard Monte Carlo method
showing a slightly lower final error of approximately 0.09% compared to the antithetic method's
0.15%. However, throughout most of the iteration range, the antithetical method maintains a
consistent efficiency advantage. The logarithmic error plot confirms the expected convergence rate
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of 0(1/+/n) for both methods, as evidenced by the approximately linear decline in log-error versus
log-iterations [9].

The moneyness analysis (the bottom-right panel of Figure 2) highlights important practical
considerations for option-pricing applications. The plot demonstrates how option prices vary with
the moneyness ratio (K/S,), with the vertical line at 1.0 representing at-the-money options. Call
option prices decrease monotonically from approximately $33.00 at a moneyness of 0.7 (deep in-the-
money) to below $2.00 at a moneyness of 1.3 (deep out-of-the-money). Conversely, put options
increase from near zero at low moneyness to approximately $25.00 at high moneyness values. This
relationship highlights the complementary nature of these instruments and underpins put-call parity,
a fundamental concept in option pricing theory [6]. The consistent agreement between Monte Carlo
and analytical solutions across the entire moneyness spectrum demonstrates the robustness of the
simulation approach for options with different degrees of moneyness.

4. Conclusion

This article presents OptionMC, a comprehensive Python package for European option pricing via
Monte Carlo simulation with variance-reduction techniques. Our results demonstrate that the
package provides accurate option price estimates that converge reliably with the analytical Black-
Scholes solutions across a range of market parameters. The implementation of antithetic variates
achieves significant variance reduction, particularly at lower iteration counts, improving
computational efficiency without sacrificing accuracy. Through systematic analysis of parameter
sensitivities, we have verified that the Monte Carlo estimates accurately capture the fundamental
relationships that drive option pricing, including volatility effects, time decay, and moneyness. The
distributional properties of the simulated stock prices and option payoffs align precisely with
theoretical expectations, confirming the package's mathematical integrity. These findings establish
OptionMC as a valuable educational and research tool that bridges theoretical finance and practical
implementation, making sophisticated option-pricing techniques accessible to students, researchers,
and practitioners in quantitative finance.

Future work should extend the package to incorporate additional variance-reduction techniques, such
as control variates and importance sampling, to further enhance computational efficiency for specific
option types. The framework could also be expanded to include path-dependent options, American-
style early-exercise features, and multi-asset derivatives, thereby broadening its applicability to more
complex financial instruments. By maintaining the educational clarity that distinguishes OptionMC
from performance-oriented commercial alternatives, these enhancements would preserve its value as
a teaching tool while increasing its practical utility for financial engineering applications. The open-
source nature of the package facilitates collaborative development and integration with existing
financial technology ecosystems, potentially leading to a more comprehensive suite of quantitative
finance tools built on transparent, educational principles.
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