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ABSTRACT

Accurate traffic prediction in large cities such as Los Angeles is
increasingly necessary as cities expand and more vehicles are added to
the roads. Using the METR-LA dataset. Using the METR-LA dataset,
this study proposes a hybrid deep learning architecture that combines
time and space modeling techniques to improve the accuracy and
scalability of traffic flow predictions. The dataset consists of multivariate
time series data from 207 loop detectors that record traffic speeds every
five minutes with very high resolution. This study evaluates five potential
model configurations: Long Short-Term Memory (LSTM), Transformer-
based TSFormer, a combination of LSTM and TSFormer, Spatio-
Temporal Graph Convolutional Network (STGCN), and a model
combining STGCN and TSFormer. The evaluation conducted using three
performance metrics Mean Absolute Error (MAE), Mean Squared Error
(MSE), and Root Mean Squared Error (RMSE) were used to assess how
well each model captures complex temporal and spatial relationships. Our
results show that the LSTM+TSFormer hybrid model consistently
outperforms all other models across all criteria. This model has the lowest
MAE (0.0624) and RMSE (0.1204), meaning it is better at learning
patterns that occur over time and patterns that occur rapidly. STGCN-
based models are quite good at capturing spatial dependencies, but their
performance improves when combined with attention-based TSFormer
modules. The hybrid models introduced in this study overcome major
limitations, including the narrow receptive range of recurrent networks
and the inflexible spatial structures assumed in graph-based methods.
This work offers important perspectives for developing forecasting
models that are not only accurate and scalable but also transparent and
adaptable. Future work may explore dynamic graph construction and
multimodal input integration to further enhance adaptability in real-world
applications.

This is an open access article under the CC—BY-SA license.

1. Introduction

Accurate traffic forecasting has become increasingly necessary in recent years due to a sharp rise in
car ownership and rapid urbanization in major cities such as Los Angeles. Traffic congestion,
environmental damage, and wasted time can result when road infrastructure is unable to keep up with
ever-increasing transportation demands. So, prediction models and traffic impact assessments are
quite important for keeping an eye on how traffic changes and coming up with better ways to manage
it. Researchers have used high-resolution traffic sensor datasets, such as METR-LA, which contains
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traffic speed records from 207 loop detectors across the Los Angeles freeway system and is collected
every five minutes, to address the mounting challenges of urban traffic [1]. This dataset illustrates
the complexity of spatial and temporal relationships in the transportation network. However, to make
sense of these complex datasets, you need more advanced machine learning methods than standard
visualization techniques [2]. Independent of other traffic data modeling approaches used over the
years, time-series techniques, such as Long Short-Term Memory (LSTM), have been widely adopted
for their ability to capture sequence dependencies[3]. On the other hand, LSTM shows weaknesses
in addressing long-term dependencies and handling spatial relationships[4]. Transformer-based
models were introduced to address these limitations, for example, by improving long-term sequence
forecasting through self-attention mechanisms that capture global temporal patterns [5]. Next are
Graph Neural Networks, which are well-suited to modeling sensor interactions across space, such as
Spatio-Temporal Convolutional Graph Nets (STGCNSs)[6].

Rather, however, many GNN-based techniques have static graph structures, which don't catch the
dynamically evolving nature of traffic systems [7]. The proposed approach is a hybrid deep learning
framework that integrates LSTM, TSFormer (an adapted Transformer architecture), and ST-GCN.
We analyze five models: LSTM, TSFormer, LSTM+TSFormer, ST-GCN, and ST-GCN+TSFormer.
In brief, TSFormer is designed to extract segment-level temporal representations from long historical
sequences, whereas ST-GCN captures spatial correlations among sensors. By combining these
advantages, the proposed model would provide better accuracy and robustness in traffic forecasting.
The Spatio-Temporal Adaptive Graph Convolutional Network (STAGCN) was developed by Ma et
al. [8] uses both static and adaptive graph structures to dynamically modify its adjacency matrix.
Through attention mechanisms, the model discovers changes in spatial structures and operates on
traffic data with its combined spatio-temporal convolutional processing layers. Testing on the
PeMSD4 and PeMSDS datasets reveals that STAGCN outperforms traditional GNN-based models
in terms of RMSE and MAE.

Lin and Zha [1] developed the A3T-GCN model, which uses a Graph Neural Network architecture
to evaluate performance on the METR-LA dataset. Their model achieved better forecasting results
than LSTM and standard neural networks because it effectively captured spatial-temporal
dependencies. Wu et al.[2] presented a model framework that uses Graph Wavelet transforms with
LSTM networks to allow spatial learning through wavelet decomposition while maintaining
sequential learning capabilities. The model achieved superior accuracy results on the METR-LA
dataset. Zhang and Zheng[3] introduced a traffic forecasting system which disengages spatial
features from temporal features to decrease representational redundancy and improve interpretability.
The method successfully managed the intricate patterns of urban traffic systems.

Wang et al. [4] KGR-STGNN represents a metro traffic forecasting system that integrates knowledge
graph representation learning into spatiotemporal graph neural networks. The model improved its
predictive accuracy relative to LSTM and STGCN by incorporating semantic embeddings that
capture external factors, such as weather and events, to enable extended prediction horizons.
Oluwasanmi et al. [5] used the Knowledge Graph method with ST-GCN to incorporate contextual
knowledge into the forecasting process. This integration improved explainability and forecast
performance. Lei et al.[6] developed sparse Spatio-Temporal Graph Neural Networks (GCN-STGT
and GAT-STGT) for traffic speed forecasting on Caltrans PeMS data. The models achieved 90%
dynamic sparsity, reducing FLOPs by 10x, with only slight performance losses across short-, mid-,
and long-term prediction intervals.

The Dynamic Causal Graph Convolutional Network (DCGCN) by Lin et al.[7] uses a time-varying
dynamic Bayesian network (DBN) as its hyper-network to produce adaptive causal graphs that
update during each time interval. The causal graphs are processed by a GCN layer to predict traffic
patterns. The experimental results from METR-LA demonstrate that DCGCN achieves superior
performance compared with state-of-the-art benchmarks. The Spatio-Temporal Adaptive Graph
Convolutional Network (STAGCN) was developed by Ma et al.[8] uses both static and adaptive
graph structures to dynamically modify its adjacency matrix. Through attention mechanisms, the

Elviyani Mawarni et.al (Hybrid Deep Learning for Spatiotemporal Traffic Forecasting ...)



ISSN 2722-2039 International Journal of Data Science 105
Vol. 6, No. 2, December 2025, pp. 103-112

model discovers changes in spatial structures and operates on traffic data with its combined spatio-
temporal convolutional processing layers. Testing on the PeMSD4 and PeMSDS datasets reveals that
STAGCN outperforms traditional GNN-based models in terms of RMSE and MAE. The research
team of Shin and Yoon [9] developed PGCN, a Progressive Graph Convolutional Network
framework that automatically modifies graph structures during both training and inference. The
construction of progressive adjacency matrices through trend similarity analysis, combined with
dilated causal convolutions, gated activation units, and residual and skip connections, leads to PGCN
achieving state-of-the-art performance on seven real-world traffic datasets, such as METR-LA,
PEMS, and Seattle-Loop. Brimos et al. [10] demonstrated the effectiveness of combining open-
government traffic data with GNN models, including TGCN and DCRNN, for traffic flow
forecasting. Their evaluation shows that TGCN consistently outperformed traditional models, such
as ARIMA and Historical Average, achieving up to a 70% reduction in forecasting error for short-
term forecasts.

The paper by Zhong et al. [11] presents ASTG-ODE, which uses attention-based spatio-temporal
Graph Neural ODEs to learn traffic dynamics via continuous-time neural ODEs combined with
spatio-temporal attention. The PeMS-BAY and PeMS04 real-world datasets showed that ASTG-
ODE achieves the lowest RMSE among GNN models, including DCRNN, STGCN, and STGODE,
because it captures multi-horizon temporal patterns and spatial dependencies. Han et al. [12]
proposed a more sophisticated spatial modelling strategy for traffic forecasting by introducing
Ollivier-Ricci curvature into the message-passing procedure of spatio-temporal graph neural
networks (STGNNs). Their approach effectively captures neighborhood-to-neighborhood
dependencies in complex road networks, achieving significant improvements in predictive
performance over traditional distance- or adjacency-based STGNNSs.

Jiang et al. [13] introduced MegaCRN, a spatio-temporal forecasting model that addresses the
challenges of heterogeneity and non-stationarity in traffic networks. Unlike traditional models with
fixed graphs, MegaCRN incorporates a Meta-Graph Learner that generates adaptive node
embeddings from a meta-memory module, enabling the model to capture diverse and evolving traffic
patterns. Tested on datasets such as METR-LA, PEMS-BAY, and EXPY-TKY, MegaCRN
consistently outperformed existing baselines in both accuracy and robustness, particularly under
irregular traffic conditions, such as incidents and congestion. Singh et al. [14] introduced ISTGCN,
which operates as a single spatio-temporal graph convolutional network to analyze spatial and
temporal relationships in traffic forecasting. Their method combined block-diagonal adjacency
matrices with temporal convolutions to achieve higher prediction accuracy on the PeMSD7 and
PeMSDS datasets than DCRNN and Graph WaveNet for short- and mid-term predictions.

The paper from Shao and his team in 2022[15] developed DDSTGNN, which solves the
entanglement problems of traditional STGNNs by decoupling spatial and temporal dependencies.
DDSTGNN enhances prediction accuracy and flexibility by creating separate models for spatial and
temporal dependencies through dynamic graph construction and adaptive temporal graphs. The
decoupled design of DDSTGNN outperforms DCRNN, STGCN, and MegaCRN on multiple PeMS
datasets, achieving higher accuracy in tracking complex and changing traffic behavior. According to
Chang et al. [16]MSSTA-GRN employs multiscale spatio-temporal modelling, in which stacked
GCN layers integrate with a multiscale GRU to capture local and global traffic patterns. The authors
demonstrate that their method achieves higher accuracy and greater stability than GRU, GCN, and
STGCN baselines on real-world datasets across various forecasting horizons.

SeqGNN, a sequential graph neural network framework developed by Xie et al.[17], approaches
traffic speed prediction through graph-to-graph sequence modeling. The combination of graph
network blocks with recurrent mechanisms enables SeqGNN to capture spatio-temporal
dependencies, resulting in superior performance compared to baseline Seq2Seq and RNN models for
predicting dynamic urban traffic patterns. The work of Cheng et al. [18] presents AC-STSGCN as a
spatio-temporal GNN that integrates traffic flow, speed, and occupancy features. The model
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outperformed the STGCN and DCRNN baselines on the PeMSD4 and PeMSDS datasets, owing to
its feature attention and synchronous aggregation modules.

Kong, Guo, and Liu. [19] introduced STPGNN, a GNN-based model that focuses on pivotal nodes
to better capture traffic flow dynamics. By identifying and modeling these key nodes, STPGNN
outperforms baselines such as DCRNN and STSGCN across multiple real-world datasets, achieving
improved accuracy and efficiency. Caetano, Oliveira, and Ramos [20] conducted a comprehensive
comparison of six  Transformer-based models for probabilistic  time  series
forecasting. They demonstrated that the use of explanatory variables such as price, calendar effects,
and promotional events significantly improves forecast accuracy in retail demand forecasting.

Dai, Lyu, and Miao. [21] introduced FasterSTS, a lightweight spatio-temporal GCN that reduces
graph computation complexity to O(KN) while effectively modeling spatial-temporal correlations.
Without using RNNs or attention, it outperformed models such as STGODE and STFGNN on the
PeMS datasets. Zheng et al. [22] proposed STGODE, a spatiotemporal graph neural ODE that learns
continuous traffic dynamics. STGODE employed a flexible time-step prediction process and
outperformed DCRNN and MTGNN on standard benchmarks.

Traffic forecasting model by Han et al. [23] integrates adaptive subgraph reformulation into a spatio-
temporal deep learning framework. This model improves prediction accuracy by eliminating
unnecessary inputs and generating multi-step forecasts effectively. Zhao et al. [24] developed TS-
NAS, a traffic forecasting model that integrates spatial-temporal attention mechanisms with neural
architecture search, and is able to flexibly select which optimal attention and convolutional modules
in the architecture actually provide complementary predictive performance. TS-NAS outperformed
standard models such as STGCN and ASTGCN on the PEMS datasets.

Recent research has explored diverse deep learning models for spatiotemporal traffic forecasting,
including LSTM models for sequential learning, Transformer models for long-range dependencies,
and Graph Neural Network (GNN) models for spatial structure modelling. Many existing approaches
use these methods separately, limiting their ability to capture the complex relationships in urban
traffic data. Our paper addresses this void by proposing a hybrid architecture that integrates LSTM,
Transformer, and GCN modules into a single framework to improve performance, adaptability, and
robustness across different spatial and temporal dynamics, using the METR-LA benchmark dataset.

2. Materials and Methods

This study aims to evaluate the performance of various deep learning architectures for multivariate
time series forecasting using large-scale traffic datasets. The methodology comprises three main
components: data preprocessing, model architecture implementation, and evaluation.

Dataset & | Model Architecture
Preprocessing i implementation

Evaluation

Figure 1. Flow diagram of the experimental methodology applied in this study

2.1 Dataset and Preprocessing

We employ the METR-LA dataset, which contains traffic speed recordings from 207 loop detectors
in the Los Angeles highway network, collected at 5S-minute intervals over four months. The dataset
is provided in HDF5 (.h5) format for sensor readings and Pickle (pkl) format for the adjacency matrix
that defines spatial relationships between sensors.

The preprocessing pipeline involves:
- Data Extraction: Traffic readings are retrieved from the df/blockO_values key in the .h5 file,
and the adjacency matrix is extracted from the .pkl file.
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« Missing Value Handling: Missing or undefined values are handled using forward and backward
filling or replaced with zeros.
« Normalization: Sensor data is normalized using either MinMax scaling or Z-score
standardization.
« Window Segmentation: A sliding window method is applied to transform the time series into
a supervised learning format. Each training sample includes 12 input time steps and 3 output
time steps
The dataset is divided sequentially into training (70%), validation (15%), and testing (15%) splits to
preserve temporal continuity.

2.2  Model Architectures

We implement five model configurations to capture temporal and spatial patterns in traffic flow:
LSTM: The Long Short-Term Memory (LSTM) network serves as a temporal baseline, designed to
learn sequential dependencies through memory-cell updates. Its architecture typically consists of
stacked LSTM layers followed by a dense output layer for final prediction.[25] At each time step ¢,
the LSTM performs the following computations, Eq (1), Eq (2), Eq (3), Eq (4), Eq (5), Eq (6):

fo = oWy [hes, %] + by) (1)

Eq (1) Forget Gate, this gate determines which parts of the previous cell state should be forgotten or
retained.

ir =o(W; [ht_lrxt] + b;) 2)

Eq (2) Input Gate, the input gate decides which new information was added to the current memory
cell.

C; = tanh(W,[he-1, x] + be) (3)

Eq (3) Candidate Cell State. This is the candidate content that may be added to the memory state,
subject to the input gate.

Cc=fO0C_1—1+i,OC 4)

Eq (4) Cell State Update, The cell state is updated by combining the retained portion of the previous
state and the new candidate values.

0y = o(W,[he-1, X + by) (5)

Eq (5) Output Gate, The output gate controls how much of the current cell state is exposed as output.

h, = ot © tanh(C,) (6)

Eq (6) Hidden State, The hidden state ht serves as the output of the LSTM unit at time ¢ and is used
as input to the next time step or passed to subsequent layers.

TSFormer, represents a time series variant of the Transformer structure, which uses self-attention
and positional encoding to discover long-range temporal dependencies.[26] The model utilizes
parallel sequence processing to generate learnable representations that predict temporal
dynamics.[27] The self-attention mechanism is defined as Eq. (7):

Attention(Q,K,V) = softmax (QTZ:) % )

Eq (7) Self-Attention, computes the relationship between different time steps by comparing query Q,
key K, and value V matrices, where d, is the key dimension.
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Lyar = Ziemllx; — %I (8)
Eq (8) Masked Autoencoding Loss, penalizes the reconstruction error over masked positions M
where x; is the ground truth and X; is the model’s prediction.

LSTM+TSFormer, The hybrid LSTM + TSFormer model combines local temporal modeling from
LSTM with global pattern recognition from TSFormer. LSTM first processes the input sequence and
outputs hidden states h; as described in Eq (1) until Eq (6). These are then passed to the TSFormer
module, which applies self-attention as in Eq (7) to extract long-range dependencies. The final output
is generated and optimized using Eq. (9):

1 ~
Luse = 5 Xie1 (i — yi)° (€))
Eq (9) MSE Loss evaluates prediction error over the batch.

STGCN, a Spatio-Temporal Graph Convolutional Network, models spatial correlations among
traffic sensors using graph convolutions, while temporal dependencies are captured using 1D
convolutions along the temporal dimension. The spatial structure is described with a graph adjacency
matrix, which is derived from .pkl file containing information regarding sensor connectivity. This
matrix represents the relationship between nodes (sensors) based on physical road distances or some
predefined topology.[28] In this case, spectral graph convolutions are used for spatial feature
extraction as shown in Eq. (10):

HWY = g(D~Y2AD~1/2HOWO® (10)

Eq (10) Graph Convolution, combines neighboring node features using the normalized adjacency
matrix A , where D is the corresponding degree matrix and ¢ is an activation function (e.g., ReLU).

Temporal dynamics are modelled through 1D convolution applied across time windows as shown in
Eq. (11):

Yy = Yoo Wi Xeok (11)

Eq (11) Temporal Convolution captures short-term dependencies by sliding a learnable kernel
W over past input sequences of length K.

STGCN+TSFormer, this enhanced model integrates TSFormer representations into the STGCN
framework. Segment-level outputs from the TSFormer are fused with spatio-temporal features within
STGCN, enabling the model to leverage both local and global dependencies effectively. The
TSFormer module first processes the input sequence to extract long-range temporal features using
the self-attention mechanism as defined in Eq. (7). The resulting representations, denoted as
F_TSFormer, are then integrated with the spatial and short-term temporal features F_STGCN, which
are extracted through graph convolution (Eq. 10) and temporal convolution (Eq. 11). Fusion between
the two feature representations can be performed in two ways follows by Eq. (12):

Z = concat(Fsreen, Frsrormer) (12)

Eq (12) Feature Concatenation combines spatial and temporal features from both modules into a
single vector for prediction. Alternatively, weighted fusion can be applied as follows in Eq. (13):

Z = Fsrgent% - Frspormer (13)

Eq (13) Weighted Fusion allows the model to balance the contribution of TSFormer by tuning the
fusion parameter <. The fused representation Z is passed to a fully connected layer for final
prediction.
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2.3 Evaluation Metrics

The evaluation of the proposed traffic forecasting models uses three well-known error metrics: Mean
Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). The
test dataset serves as the basis for calculating these metrics to assess model performance on unknown
datasets. Each of these metrics yields better prediction accuracy whenever the values decrease.
Mean Absolute Error (MAE) measures the average magnitude of errors between predicted and actual
values, without regard to their sign.[29] It provides a straightforward interpretation of the average
deviation from the true values as in Eq. (14):

MAE =nli=1%n|yi—9i| (14)

In Eq. (14), yi denotes the actual observed value, ¥i is the predicted value, and n is the total
number of observations. This metric is less sensitive to large errors and is suitable when all
individual prediction errors are equally important

Mean Squared Error (MSE): MSE calculates the average of the squared differences between actual
and predicted values. By squaring the errors, MSE penalizes larger deviations more heavily, making
it effective for highlighting models with large outliers. It can be calculated using Eq. (15).

1 . A
MSE = —¥i-,(yi — §1)° (15)

In Eq. (15), the squared differences amplify the impact of larger errors, allowing this metric to reflect
the variance of the prediction errors. MSE is widely used when larger deviations are more critical to
avoid.

Root Mean Squared Error (RMSE) is the square root of MSE and is often preferred for its
interpretability, as it maintains the same units as the original data. It provides a measure of the
standard deviation of the prediction errors.[30] It can be calculated using Eq. (16)

RMSE = |31, (i = y)? (16)

Eq. 16 demonstrates that RMSE is obtained by taking the square root of MSE, facilitating easier
comparison with the original data scale. This makes RMSE especially useful for understanding the
average error magnitude in practical terms.

The metric provides a clear understanding of the typical deviation from actual data points: researchers
can assess model accuracy by analyzing MAE alongside MSE and RMSE, as these metrics represent
overall performance (MAE), capture large errors (MSE), and provide interpretable measures
(RMSE).

3. Results and Discussion

This section reports the experimental results of five deep learning architectures on the METR-LA
dataset: LSTM, TSFormer, LSTM+TSFormer, STGCN, and STGCN+TSFormer. Performance
evaluation is performed using three commonly-used error statistics, including Mean Absolute Error
(MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). The main goal of this
analysis is to determine which architecture has learned the most effective spatiotemporal traffic
patterns.

3.1 Performance Comparison of Forecasting Models

Table 1 below summarizes the prediction performance of five deep learning models (LSTM,
TSFormer, LSTM+TSFormer, STGCN, STGCN+TSFormer) evaluated using three metrics: Mean
Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE).
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Table 1. Performance Comparison of Models

Model MAE MSE RMSE
LSTM 0.0811 0.0251 0.1584
TSFormer 0.2741 0.3020 0.5495
LSTM+TSFormer 0.0624 0.0145 0.1204
STGCN 0.5187 0.7022 0.8380
STGCN+TSFormer 0.2807 0.3420 0.5848

Analysis of Table 1 shows that integrating different deep learning architectures significantly impacts
the accuracy of traffic forecasting models. Among the evaluated models, the LSTM+TSFormer hybrid
model demonstrated superior performance across all three evaluation metrics, with MAE: 0.0624,
MSE: 0.0145, and RMSE: 0.1204. This indicates that the combination of temporal sequence modelling
(via LSTM) and long-range attention-based learning (via Transformer) enables these predictions.

The standalone LSTM model achieves lower error than TSFormer, indicating that recurrent neural
networks with memory gates are more effective at learning short- and medium-term temporal
dependencies. However, when this capability is combined with the Transformer's ability to capture
global contextual relationships, performance improves significantly, as observed in the hybrid
configuration. The TSFormer model produces strong results, outperforming graph-based models but
underperforming relative to LSTM-based models. Nevertheless, this model offers significant
advantages in terms of training efficiency. The TSFormer attention mechanism enables parallel
processing of sequences, unlike the sequential nature of LSTM. As a result, models that integrate
TSFormer generally require shorter training times and are more scalable to large datasets.

On the other hand, the STGCN model shows the worst performance with the highest error rates
across all metrics (MAE = 0.5187, RMSE = 0.8380). This suggests that, although STGCN is
architecturally capable of modelling spatio-temporal dependencies through graph convolutions and
1D temporal convolutions, the model may struggle to generalize effectively in this context. However,
performance improved slightly in the STGCN+TSFormer model, indicating that integrating a
Transformer layer can enhance temporal pattern recognition in graph-based models, while
accelerating training due to the Transformer's non-recurrent architecture.

An important factor contributing to performance variation is the difference in input data
representation. The LSTM, TSFormer, and LSTM+TSFormer models rely solely on the .hS dataset,
which contains temporal traffic speed data. On the other hand, STGCN-based models use both .h5
and .pkl files, with the .pkl file encoding the spatial structure of the traffic sensor network as an
adjacency matrix. While spatial information theoretically enhances model capabilities, it also
increases architectural complexity and the risk of overfitting, particularly when the graph structure
is suboptimal or spatial correlations are weak.

Overall, the results indicate that temporal dynamics play a more dominant role than spatial
dependencies in the METR-LA dataset. As a result, hybrid models that combine temporal memory
and long-range attention, such as LSTM+TSFormer, are not only the most accurate but also more
computationally efficient, offering a promising balance between performance and training time for
spatio-temporal traffic forecasting.

4. Conclusion

In conclusion, this study focuses on the implementation of a hybrid deep learning architecture for
spatio-temporal traffic forecasting using the METR-LA dataset. By evaluating five models, LSTM,
TSFormer, LSTM+TSFormer, STGCN, and STGCN+TSFormer this study highlights the
effectiveness of combining temporal sequence modeling and attention mechanisms in improving
prediction accuracy. Hybrid models LSTM+TSFormer, have demonstrated superior performance
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across all evaluated metrics, underscoring the importance of leveraging memory-based learning and
global temporal context. Additionally, the addition of TSFormer not only improves model accuracy
but also reduces training time due to its parallel computing capabilities. The findings of this study
contribute to a better understanding of the challenges in traffic forecasting and model behavior. This
reinforces the role of deep learning in addressing complex urban mobility issues by modelling traffic
dynamics both in time and space. By continuing to explore dynamic spatial structures and multimodal
data integration, hybrid deep learning frameworks are expected to play an essential role in developing
more accurate, adaptive, and scalable traffic forecasting systems.
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