
International Journal of Data Science          ISSN 2722-2039 

Vol. 6, No. 2, December 2025, pp. 103-112  103 

 

           

Hybrid Deep Learning for Spatiotemporal Traffic Forecasting: 

Integrating LSTM, Transformer, and Graph Convolutional 

Networks on the METR-LA Dataset 

Elviyani Mawarni a,1,*, Aria Hendrawan a 

a Information Technology and Communication, Universitas Semarang, Soekarno Hatta Street Tlogosari, Indonesia 

1 elviyanim3@gmail.com 

* corresponding author 

 

1. Introduction  

Accurate traffic forecasting has become increasingly necessary in recent years due to a sharp rise in 

car ownership and rapid urbanization in major cities such as Los Angeles. Traffic congestion, 

environmental damage, and wasted time can result when road infrastructure is unable to keep up with 

ever-increasing transportation demands. So, prediction models and traffic impact assessments are 

quite important for keeping an eye on how traffic changes and coming up with better ways to manage 

it. Researchers have used high-resolution traffic sensor datasets, such as METR-LA, which contains 
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 Accurate traffic prediction in large cities such as Los Angeles is 
increasingly necessary as cities expand and more vehicles are added to 
the roads. Using the METR-LA dataset. Using the METR-LA dataset, 
this study proposes a hybrid deep learning architecture that combines 
time and space modeling techniques to improve the accuracy and 
scalability of traffic flow predictions. The dataset consists of multivariate 
time series data from 207 loop detectors that record traffic speeds every 
five minutes with very high resolution. This study evaluates five potential 
model configurations: Long Short-Term Memory (LSTM), Transformer-
based TSFormer, a combination of LSTM and TSFormer, Spatio-
Temporal Graph Convolutional Network (STGCN), and a model 
combining STGCN and TSFormer. The evaluation conducted using three 
performance metrics Mean Absolute Error (MAE), Mean Squared Error 
(MSE), and Root Mean Squared Error (RMSE) were used to assess how 
well each model captures complex temporal and spatial relationships. Our 
results show that the LSTM+TSFormer hybrid model consistently 
outperforms all other models across all criteria. This model has the lowest 
MAE (0.0624) and RMSE (0.1204), meaning it is better at learning 
patterns that occur over time and patterns that occur rapidly. STGCN-
based models are quite good at capturing spatial dependencies, but their 
performance improves when combined with attention-based TSFormer 
modules. The hybrid models introduced in this study overcome major 
limitations, including the narrow receptive range of recurrent networks 
and the inflexible spatial structures assumed in graph-based methods. 
This work offers important perspectives for developing forecasting 
models that are not only accurate and scalable but also transparent and 
adaptable. Future work may explore dynamic graph construction and 
multimodal input integration to further enhance adaptability in real-world 
applications. 
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traffic speed records from 207 loop detectors across the Los Angeles freeway system and is collected 

every five minutes, to address the mounting challenges of urban traffic [1]. This dataset illustrates 

the complexity of spatial and temporal relationships in the transportation network. However, to make 

sense of these complex datasets, you need more advanced machine learning methods than standard 

visualization techniques [2]. Independent of other traffic data modeling approaches used over the 

years, time-series techniques, such as Long Short-Term Memory (LSTM), have been widely adopted 

for their ability to capture sequence dependencies[3]. On the other hand, LSTM shows weaknesses 

in addressing long-term dependencies and handling spatial relationships[4]. Transformer-based 

models were introduced to address these limitations, for example, by improving long-term sequence 

forecasting through self-attention mechanisms that capture global temporal patterns [5]. Next are 

Graph Neural Networks, which are well-suited to modeling sensor interactions across space, such as 

Spatio-Temporal Convolutional Graph Nets (STGCNs)[6]. 

Rather, however, many GNN-based techniques have static graph structures, which don't catch the 

dynamically evolving nature of traffic systems [7]. The proposed approach is a hybrid deep learning 

framework that integrates LSTM, TSFormer (an adapted Transformer architecture), and ST-GCN. 

We analyze five models: LSTM, TSFormer, LSTM+TSFormer, ST-GCN, and ST-GCN+TSFormer. 

In brief, TSFormer is designed to extract segment-level temporal representations from long historical 

sequences, whereas ST-GCN captures spatial correlations among sensors. By combining these 

advantages, the proposed model would provide better accuracy and robustness in traffic forecasting. 

The Spatio-Temporal Adaptive Graph Convolutional Network (STAGCN) was developed by Ma et 

al. [8] uses both static and adaptive graph structures to dynamically modify its adjacency matrix. 

Through attention mechanisms, the model discovers changes in spatial structures and operates on 

traffic data with its combined spatio-temporal convolutional processing layers. Testing on the 

PeMSD4 and PeMSD8 datasets reveals that STAGCN outperforms traditional GNN-based models 

in terms of RMSE and MAE.  

Lin and Zha [1] developed the A3T-GCN model, which uses a Graph Neural Network architecture 

to evaluate performance on the METR-LA dataset. Their model achieved better forecasting results 

than LSTM and standard neural networks because it effectively captured spatial-temporal 

dependencies. Wu et al.[2] presented a model framework that uses Graph Wavelet transforms with 

LSTM networks to allow spatial learning through wavelet decomposition while maintaining 

sequential learning capabilities. The model achieved superior accuracy results on the METR-LA 

dataset. Zhang and Zheng[3] introduced a traffic forecasting system which disengages spatial 

features from temporal features to decrease representational redundancy and improve interpretability. 

The method successfully managed the intricate patterns of urban traffic systems.  

Wang et al. [4] KGR-STGNN represents a metro traffic forecasting system that integrates knowledge 

graph representation learning into spatiotemporal graph neural networks. The model improved its 

predictive accuracy relative to LSTM and STGCN by incorporating semantic embeddings that 

capture external factors, such as weather and events, to enable extended prediction horizons. 

Oluwasanmi et al. [5] used the Knowledge Graph method with ST-GCN to incorporate contextual 

knowledge into the forecasting process. This integration improved explainability and forecast 

performance. Lei et al.[6] developed sparse Spatio-Temporal Graph Neural Networks (GCN-STGT 

and GAT-STGT) for traffic speed forecasting on Caltrans PeMS data. The models achieved 90% 

dynamic sparsity, reducing FLOPs by 10x, with only slight performance losses across short-, mid-, 

and long-term prediction intervals.  

The Dynamic Causal Graph Convolutional Network (DCGCN) by Lin et al.[7] uses a time-varying 

dynamic Bayesian network (DBN) as its hyper-network to produce adaptive causal graphs that 

update during each time interval. The causal graphs are processed by a GCN layer to predict traffic 

patterns. The experimental results from METR-LA demonstrate that DCGCN achieves superior 

performance compared with state-of-the-art benchmarks. The Spatio-Temporal Adaptive Graph 

Convolutional Network (STAGCN) was developed by Ma et al.[8] uses both static and adaptive 

graph structures to dynamically modify its adjacency matrix. Through attention mechanisms, the 
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model discovers changes in spatial structures and operates on traffic data with its combined spatio-

temporal convolutional processing layers. Testing on the PeMSD4 and PeMSD8 datasets reveals that 

STAGCN outperforms traditional GNN-based models in terms of RMSE and MAE. The research 

team of Shin and Yoon [9] developed PGCN, a Progressive Graph Convolutional Network 

framework that automatically modifies graph structures during both training and inference. The 

construction of progressive adjacency matrices through trend similarity analysis, combined with 

dilated causal convolutions, gated activation units, and residual and skip connections, leads to PGCN 

achieving state-of-the-art performance on seven real-world traffic datasets, such as METR-LA, 

PEMS, and Seattle-Loop. Brimos et al. [10] demonstrated the effectiveness of combining open-

government traffic data with GNN models, including TGCN and DCRNN, for traffic flow 

forecasting. Their evaluation shows that TGCN consistently outperformed traditional models, such 

as ARIMA and Historical Average, achieving up to a 70% reduction in forecasting error for short-

term forecasts.  

The paper by Zhong et al. [11] presents ASTG-ODE, which uses attention-based spatio-temporal 

Graph Neural ODEs to learn traffic dynamics via continuous-time neural ODEs combined with 

spatio-temporal attention. The PeMS-BAY and PeMS04 real-world datasets showed that ASTG-

ODE achieves the lowest RMSE among GNN models, including DCRNN, STGCN, and STGODE, 

because it captures multi-horizon temporal patterns and spatial dependencies. Han et al. [12] 

proposed a more sophisticated spatial modelling strategy for traffic forecasting by introducing 

Ollivier–Ricci curvature into the message-passing procedure of spatio-temporal graph neural 

networks (STGNNs). Their approach effectively captures neighborhood-to-neighborhood 

dependencies in complex road networks, achieving significant improvements in predictive 

performance over traditional distance- or adjacency-based STGNNs. 

Jiang et al. [13] introduced MegaCRN, a spatio-temporal forecasting model that addresses the 

challenges of heterogeneity and non-stationarity in traffic networks. Unlike traditional models with 

fixed graphs, MegaCRN incorporates a Meta-Graph Learner that generates adaptive node 

embeddings from a meta-memory module, enabling the model to capture diverse and evolving traffic 

patterns. Tested on datasets such as METR-LA, PEMS-BAY, and EXPY-TKY, MegaCRN 

consistently outperformed existing baselines in both accuracy and robustness, particularly under 

irregular traffic conditions, such as incidents and congestion. Singh et al. [14] introduced ISTGCN, 

which operates as a single spatio-temporal graph convolutional network to analyze spatial and 

temporal relationships in traffic forecasting. Their method combined block-diagonal adjacency 

matrices with temporal convolutions to achieve higher prediction accuracy on the PeMSD7 and 

PeMSD8 datasets than DCRNN and Graph WaveNet for short- and mid-term predictions. 

The paper from Shao and his team in 2022[15] developed DDSTGNN, which solves the 

entanglement problems of traditional STGNNs by decoupling spatial and temporal dependencies. 

DDSTGNN enhances prediction accuracy and flexibility by creating separate models for spatial and 

temporal dependencies through dynamic graph construction and adaptive temporal graphs. The 

decoupled design of DDSTGNN outperforms DCRNN, STGCN, and MegaCRN on multiple PeMS 

datasets, achieving higher accuracy in tracking complex and changing traffic behavior. According to 

Chang et al. [16]MSSTA-GRN employs multiscale spatio-temporal modelling, in which stacked 

GCN layers integrate with a multiscale GRU to capture local and global traffic patterns. The authors 

demonstrate that their method achieves higher accuracy and greater stability than GRU, GCN, and 

STGCN baselines on real-world datasets across various forecasting horizons.  

SeqGNN, a sequential graph neural network framework developed by Xie et al.[17], approaches 

traffic speed prediction through graph-to-graph sequence modeling. The combination of graph 

network blocks with recurrent mechanisms enables SeqGNN to capture spatio-temporal 

dependencies, resulting in superior performance compared to baseline Seq2Seq and RNN models for 

predicting dynamic urban traffic patterns. The work of Cheng et al. [18] presents AC-STSGCN as a 

spatio-temporal GNN that integrates traffic flow, speed, and occupancy features. The model 
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outperformed the STGCN and DCRNN baselines on the PeMSD4 and PeMSD8 datasets, owing to 

its feature attention and synchronous aggregation modules.  

Kong, Guo, and Liu. [19] introduced STPGNN, a GNN-based model that focuses on pivotal nodes 

to better capture traffic flow dynamics. By identifying and modeling these key nodes, STPGNN 

outperforms baselines such as DCRNN and STSGCN across multiple real-world datasets, achieving 

improved accuracy and efficiency. Caetano, Oliveira, and Ramos [20] conducted a comprehensive 

comparison of six Transformer-based models for probabilistic time series 

forecasting. They demonstrated that the use of explanatory variables such as price, calendar effects, 

and promotional events significantly improves forecast accuracy in retail demand forecasting.  

Dai, Lyu, and Miao. [21] introduced FasterSTS, a lightweight spatio-temporal GCN that reduces 

graph computation complexity to O(KN) while effectively modeling spatial-temporal correlations. 

Without using RNNs or attention, it outperformed models such as STGODE and STFGNN on the 

PeMS datasets. Zheng et al. [22] proposed STGODE, a spatiotemporal graph neural ODE that learns 

continuous traffic dynamics. STGODE employed a flexible time-step prediction process and 

outperformed DCRNN and MTGNN on standard benchmarks.  

Traffic forecasting model by Han et al. [23] integrates adaptive subgraph reformulation into a spatio-

temporal deep learning framework. This model improves prediction accuracy by eliminating 

unnecessary inputs and generating multi-step forecasts effectively. Zhao et al. [24] developed TS-

NAS, a traffic forecasting model that integrates spatial-temporal attention mechanisms with neural 

architecture search, and is able to flexibly select which optimal attention and convolutional modules 

in the architecture actually provide complementary predictive performance. TS-NAS outperformed 

standard models such as STGCN and ASTGCN on the PEMS datasets. 

Recent research has explored diverse deep learning models for spatiotemporal traffic forecasting, 

including LSTM models for sequential learning, Transformer models for long-range dependencies, 

and Graph Neural Network (GNN) models for spatial structure modelling. Many existing approaches 

use these methods separately, limiting their ability to capture the complex relationships in urban 

traffic data. Our paper addresses this void by proposing a hybrid architecture that integrates LSTM, 

Transformer, and GCN modules into a single framework to improve performance, adaptability, and 

robustness across different spatial and temporal dynamics, using the METR-LA benchmark dataset. 

2. Materials and Methods 

This study aims to evaluate the performance of various deep learning architectures for multivariate 

time series forecasting using large-scale traffic datasets.  The methodology comprises three main 

components: data preprocessing, model architecture implementation, and evaluation. 

 

Figure 1. Flow diagram of the experimental methodology applied in this study  

2.1 Dataset and Preprocessing 

We employ the METR-LA dataset, which contains traffic speed recordings from 207 loop detectors 

in the Los Angeles highway network, collected at 5-minute intervals over four months. The dataset 

is provided in HDF5 (.h5) format for sensor readings and Pickle (pkl) format for the adjacency matrix 

that defines spatial relationships between sensors. 

The preprocessing pipeline involves: 

• Data Extraction: Traffic readings are retrieved from the df/block0_values key in the .h5 file, 

and the adjacency matrix is extracted from the .pkl file. 
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• Missing Value Handling: Missing or undefined values are handled using forward and backward 

filling or replaced with zeros. 

• Normalization: Sensor data is normalized using either MinMax scaling or Z-score 

standardization. 

• Window Segmentation: A sliding window method is applied to transform the time series into 

a supervised learning format. Each training sample includes 12 input time steps and 3 output 

time steps  

The dataset is divided sequentially into training (70%), validation (15%), and testing (15%) splits to 

preserve temporal continuity. 

2.2 Model Architectures 

We implement five model configurations to capture temporal and spatial patterns in traffic flow: 

LSTM: The Long Short-Term Memory (LSTM) network serves as a temporal baseline, designed to 

learn sequential dependencies through memory-cell updates. Its architecture typically consists of 

stacked LSTM layers followed by a dense output layer for final prediction.[25] At each time step �, 

the LSTM performs the following computations, Eq (1), Eq (2), Eq (3), Eq (4), Eq (5), Eq (6): 

 �ₜ =  �(�	 [ℎₜ₋₁, �ₜ]  +  �	)  (1) 

 

Eq (1) Forget Gate, this gate determines which parts of the previous cell state should be forgotten or 

retained. 

 �� = �(��[ℎₜ��, �ₜ] + ��) (2) 

Eq (2) Input Gate, the input gate decides which new information was added to the current memory 

cell. 

 ��� = ���ℎ(��[ℎₜ₋₁, �ₜ] + ��) (3) 

Eq (3) Candidate Cell State. This is the candidate content that may be added to the memory state, 

subject to the input gate. 

 �� = �� ⊙ ���� − 1 + �� ⊙ ��� (4) 

Eq (4) Cell State Update, The cell state is updated by combining the retained portion of the previous 

state and the new candidate values. 

 !� = �(�"[ℎₜ₋₁, �ₜ] + �") (5) 

Eq (5) Output Gate, The output gate controls how much of the current cell state is exposed as output. 

 ℎ� = !� ⊙ ���ℎ(��) (6) 

 

Eq (6) Hidden State, The hidden state ℎ� serves as the output of the LSTM unit at time � and is used 

as input to the next time step or passed to subsequent layers. 

TSFormer, represents a time series variant of the Transformer structure, which uses self-attention 

and positional encoding to discover long-range temporal dependencies.[26] The model utilizes 

parallel sequence processing to generate learnable representations that predict temporal 

dynamics.[27] The self-attention mechanism is defined as Eq. (7):  

 #��$���!�(%, &, ') = (!��)�� *+,-
./0

1 ' (7) 

Eq (7) Self-Attention, computes the relationship between different time steps by comparing query %, 

key &, and value ' matrices, where 23 is the key dimension. 
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 4567 = ∑ ‖�� −�∈5 �;�‖< (8) 

Eq (8) Masked Autoencoding Loss, penalizes the reconstruction error over masked positions = 

where �� is the ground truth and �;� is the model’s prediction. 

LSTM+TSFormer, The hybrid LSTM + TSFormer model combines local temporal modeling from 

LSTM with global pattern recognition from TSFormer. LSTM first processes the input sequence and 

outputs hidden states ℎ� as described in Eq (1) until Eq (6). These are then passed to the TSFormer 

module, which applies self-attention as in Eq (7) to extract long-range dependencies. The final output 

is generated and optimized using Eq. (9): 

 45>7 = �
? ∑ (@;� −?�A� @�)< (9) 

Eq (9) MSE Loss evaluates prediction error over the batch. 

STGCN, a Spatio-Temporal Graph Convolutional Network, models spatial correlations among 

traffic sensors using graph convolutions, while temporal dependencies are captured using 1D 

convolutions along the temporal dimension. The spatial structure is described with a graph adjacency 

matrix, which is derived from .pkl file containing information regarding sensor connectivity. This 

matrix represents the relationship between nodes (sensors) based on physical road distances or some 

predefined topology.[28] In this case, spectral graph convolutions are used for spatial feature 

extraction as shown in Eq. (10): 

 B(CD�) = �(EF��/<# F EF��/<B(C)�(C) (10) 

Eq (10) Graph Convolution, combines neighboring node features using the normalized adjacency 

matrix # F , where EF is the corresponding degree matrix and � is an activation function (e.g., ReLU). 

Temporal dynamics are modelled through 1D convolution applied across time windows as shown in 

Eq. (11): 

 H� = ∑ �3 ∙,��3AJ  K��3 (11) 

Eq (11) Temporal Convolution captures short-term dependencies by sliding a learnable kernel 

�3over past input sequences of length &. 

STGCN+TSFormer, this enhanced model integrates TSFormer representations into the STGCN 

framework. Segment-level outputs from the TSFormer are fused with spatio-temporal features within 

STGCN, enabling the model to leverage both local and global dependencies effectively. The 

TSFormer module first processes the input sequence to extract long-range temporal features using 

the self-attention mechanism as defined in Eq. (7). The resulting representations, denoted as 

F_TSFormer, are then integrated with the spatial and short-term temporal features F_STGCN, which 

are extracted through graph convolution (Eq. 10) and temporal convolution (Eq. 11). Fusion between 

the two feature representations can be performed in two ways follows by Eq. (12): 

 L = M!�M��(N>OPQ? , NO>R"STUS) (12) 

Eq (12) Feature Concatenation combines spatial and temporal features from both modules into a 

single vector for prediction. Alternatively, weighted fusion can be applied as follows in Eq. (13): 

 L = N>OPQ?+∝ ∙ NO>R"STUS (13) 

Eq (13) Weighted Fusion allows the model to balance the contribution of TSFormer by tuning the 

fusion parameter ∝. The fused representation L is passed to a fully connected layer for final 

prediction. 
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2.3 Evaluation Metrics 

The evaluation of the proposed traffic forecasting models uses three well-known error metrics: Mean 

Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). The 

test dataset serves as the basis for calculating these metrics to assess model performance on unknown 

datasets. Each of these metrics yields better prediction accuracy whenever the values decrease. 

Mean Absolute Error (MAE) measures the average magnitude of errors between predicted and actual 

values, without regard to their sign.[29] It provides a straightforward interpretation of the average 

deviation from the true values as in Eq. (14): 

 =#W = �1� = 1∑� ∣ @� − ŷ� ∣ (14) 

In Eq. (14), @� denotes the actual observed value, ŷ� is the predicted value, and � is the total 

number of observations. This metric is less sensitive to large errors and is suitable when all 

individual prediction errors are equally important 

Mean Squared Error (MSE): MSE calculates the average of the squared differences between actual 

and predicted values. By squaring the errors, MSE penalizes larger deviations more heavily, making 

it effective for highlighting models with large outliers. It can be calculated using Eq. (15). 

 =ZW = �
[ ∑ (@� − ŷ�)<[�A�  (15) 

In Eq. (15), the squared differences amplify the impact of larger errors, allowing this metric to reflect 

the variance of the prediction errors. MSE is widely used when larger deviations are more critical to 

avoid. 

Root Mean Squared Error (RMSE) is the square root of MSE and is often preferred for its 

interpretability, as it maintains the same units as the original data. It provides a measure of the 

standard deviation of the prediction errors.[30] It can be calculated using Eq. (16) 

 \=ZW = ]�
[ ∑ (@� − @�)<[�A�   (16) 

Eq. 16 demonstrates that RMSE is obtained by taking the square root of MSE, facilitating easier 

comparison with the original data scale. This makes RMSE especially useful for understanding the 

average error magnitude in practical terms. 

The metric provides a clear understanding of the typical deviation from actual data points: researchers 

can assess model accuracy by analyzing MAE alongside MSE and RMSE, as these metrics represent 

overall performance (MAE), capture large errors (MSE), and provide interpretable measures 

(RMSE).  

3. Results and Discussion 

This section reports the experimental results of five deep learning architectures on the METR-LA 

dataset: LSTM, TSFormer, LSTM+TSFormer, STGCN, and STGCN+TSFormer. Performance 

evaluation is performed using three commonly-used error statistics, including Mean Absolute Error 

(MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). The main goal of this 

analysis is to determine which architecture has learned the most effective spatiotemporal traffic 

patterns. 

3.1  Performance Comparison of Forecasting Models 

Table 1 below summarizes the prediction performance of five deep learning models (LSTM, 

TSFormer, LSTM+TSFormer, STGCN, STGCN+TSFormer) evaluated using three metrics: Mean 

Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). 
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Table 1. Performance Comparison of Models 

Model MAE MSE RMSE 

LSTM 0.0811 0.0251 0.1584 

TSFormer 0.2741 0.3020 0.5495 

LSTM+TSFormer 0.0624 0.0145 0.1204 

STGCN 0.5187 0.7022 0.8380 

STGCN+TSFormer 0.2807 0.3420 0.5848 

 

Analysis of Table 1 shows that integrating different deep learning architectures significantly impacts 

the accuracy of traffic forecasting models. Among the evaluated models, the LSTM+TSFormer hybrid 

model demonstrated superior performance across all three evaluation metrics, with MAE: 0.0624, 

MSE: 0.0145, and RMSE: 0.1204. This indicates that the combination of temporal sequence modelling 

(via LSTM) and long-range attention-based learning (via Transformer) enables these predictions.  

The standalone LSTM model achieves lower error than TSFormer, indicating that recurrent neural 

networks with memory gates are more effective at learning short- and medium-term temporal 

dependencies. However, when this capability is combined with the Transformer's ability to capture 

global contextual relationships, performance improves significantly, as observed in the hybrid 

configuration. The TSFormer model produces strong results, outperforming graph-based models but 

underperforming relative to LSTM-based models. Nevertheless, this model offers significant 

advantages in terms of training efficiency. The TSFormer attention mechanism enables parallel 

processing of sequences, unlike the sequential nature of LSTM. As a result, models that integrate 

TSFormer generally require shorter training times and are more scalable to large datasets.  

On the other hand, the STGCN model shows the worst performance with the highest error rates 

across all metrics (MAE = 0.5187, RMSE = 0.8380). This suggests that, although STGCN is 

architecturally capable of modelling spatio-temporal dependencies through graph convolutions and 

1D temporal convolutions, the model may struggle to generalize effectively in this context. However, 

performance improved slightly in the STGCN+TSFormer model, indicating that integrating a 

Transformer layer can enhance temporal pattern recognition in graph-based models, while 

accelerating training due to the Transformer's non-recurrent architecture.  

An important factor contributing to performance variation is the difference in input data 

representation. The LSTM, TSFormer, and LSTM+TSFormer models rely solely on the .h5 dataset, 

which contains temporal traffic speed data. On the other hand, STGCN-based models use both .h5 

and .pkl files, with the .pkl file encoding the spatial structure of the traffic sensor network as an 

adjacency matrix. While spatial information theoretically enhances model capabilities, it also 

increases architectural complexity and the risk of overfitting, particularly when the graph structure 

is suboptimal or spatial correlations are weak. 

Overall, the results indicate that temporal dynamics play a more dominant role than spatial 

dependencies in the METR-LA dataset. As a result, hybrid models that combine temporal memory 

and long-range attention, such as LSTM+TSFormer, are not only the most accurate but also more 

computationally efficient, offering a promising balance between performance and training time for 

spatio-temporal traffic forecasting. 

4. Conclusion 

In conclusion, this study focuses on the implementation of a hybrid deep learning architecture for 

spatio-temporal traffic forecasting using the METR-LA dataset. By evaluating five models, LSTM, 

TSFormer, LSTM+TSFormer, STGCN, and STGCN+TSFormer this study highlights the 

effectiveness of combining temporal sequence modeling and attention mechanisms in improving 

prediction accuracy. Hybrid models LSTM+TSFormer, have demonstrated superior performance 



ISSN 2722-2039 International Journal of Data Science 111 
Vol. 6, No. 2, December 2025, pp. 103-112 

 

Elviyani Mawarni et.al (Hybrid Deep Learning for Spatiotemporal Traffic Forecasting…) 

across all evaluated metrics, underscoring the importance of leveraging memory-based learning and 

global temporal context. Additionally, the addition of TSFormer not only improves model accuracy 

but also reduces training time due to its parallel computing capabilities. The findings of this study 

contribute to a better understanding of the challenges in traffic forecasting and model behavior. This 

reinforces the role of deep learning in addressing complex urban mobility issues by modelling traffic 

dynamics both in time and space. By continuing to explore dynamic spatial structures and multimodal 

data integration, hybrid deep learning frameworks are expected to play an essential role in developing 

more accurate, adaptive, and scalable traffic forecasting systems. 
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