International Journal of Data Science ISSN 2722-2039
Vol. 6, No. 2, December 2025, pp. 85-93 85

Sarcasm Detection on Reddit Using Classical Machine Learning
and Feature Engineering

Subrata Karmaker -

* Department of Mathematics, Technische Universitit Chemnitz, Germany
! skarmaker.tuc @ gmail.com

* corresponding author

ARTICLE INFO ABSTRACT

Sarcasm is common on social media, yet difficult for machines to

Article history interpret. Its meaning often relies on conversational tone, speaker intent
Received October 5, 2025 or situational contrast—signals not directly visible in plain text. This
Revised November 17, 2025 study investigates how far one can go in sarcasm detection using only
Accepted December 22, 2025 classical machine learning techniques and hand-crafted feature

engineering, without relying on neural architecture or contextual
information. Using a 100,000-comment stratified subsample of the Self-

Keywords Annotated Reddit Corpus (SARC 2.0), I combine word-level and
Sarcasm detection character-level TF-IDF representations with simple stylistic features
Feature engineering such as length, punctuation use, and uppercase ratios. Four classical
Text classification classifiers are evaluated: logistic regression, linear support vector
Classical machine learning machines, multinomial Naive Bayes, and random forests. Despite the
Reddit context-free design, logistic regression and Naive Bayes reach F1-scores

of approximately 0.57 on sarcastic comments, demonstrating that
classical approaches capture part of the underlying signal. The full code
is included for reproducibility.

This is an open access article under the CC—BY-SA license.

1. Introduction

Sarcasm is pervasive on platforms such as Reddit, where people use irony to express humor, criticism
or subtle disagreement. Humans typically recognize sarcasm with little effort, drawing on tone,
background knowledge, and the surrounding conversation. Automated systems, however, see only
the raw text, and a sentence such as “Great job.” may be interpreted as sincere or sarcastic depending
on the unseen context. This ambiguity poses a substantial challenge for natural language processing
(NLP) models. While modern sarcasm detection research frequently relies on deep learning and
transformer-based models, classical machine learning methods remain relevant. They offer
transparency, lower computational cost and straightforward interpretability. This study examines the
extent to which predictive performance can be achieved using only classical models and feature
engineering on reply-only comments from Reddit. The objective is not to compete with state-of-the-
art neural models, but rather to establish a clear, reproducible baseline that highlights what can (and
cannot) be learned from simple representations of text.

Early work on sarcasm detection focused heavily on lexical signals and supervised learning methods
using TF-IDF, sentiment cues, or handcrafted linguistic features. Joshi et al. [1] provide a
comprehensive survey of these approaches, noting the inherent difficulty of detecting sarcasm from
surface text alone. Later studies incorporated conversational context, showing clear improvements
in predictive accuracy. Ghosh et al. [2] demonstrate that using both the reply and the parent comment
enables models to resolve ambiguities that would otherwise be impossible. More recent research has

86 International Journal of Data Science ISSN 2722-2039
Vol. 6, No. 2, December 2025, pp. 85-93
[

explored multimodal sarcasm detection, combining text with images, metadata, or social interactions
[3]. Large pre-trained transformers also dominate modern NLP work. The Self-Annotated Reddit
Corpus (SARC) introduced by Khodak et al. [4] has become a standard dataset for sarcasm research.
The present study intentionally adopts a conservative constraint—using only the reply text—to
evaluate the capabilities of classical baselines.

The experiments are founded on the carefully curated, balanced subset of SARC 2.0, an intriguing
dataset that showcases a diverse array of sarcastic and non-sarcastic replies, all marked by the
insightful contributions of Reddit users. Each entry in this rich collection is comprised of a label
denoting the nature of the reply, along with pertinent metadata, the original parent comment, and the
reply itself. To ensure a controlled and conducive environment for analysis, only the reply text and
the accompanying binary label are utilized in the experiments. From this extensive dataset, a
subsample of 100,000 instances is meticulously drawn, stratified by label to maintain a balanced
representation of both sarcastic and non-sarcastic comments. Any empty entries or those containing
only whitespace are systematically excluded to improve data quality. The final refined dataset is then
divided into two parts: an 80% training set used to train the models and a 20% test set reserved for
model evaluation.

2. Materials and Method

The feature representation is meticulously crafted using a custom transformer, TextFeatures. This
innovative approach seamlessly integrates several key components to enhance the analysis of text
data. First, it employs word-level TF-IDF calculations that analyze both unigrams and bigrams,
capturing the fundamental building blocks of language usage. Additionally, it incorporates character-
level TF-IDF, focusing on 3- to S-character sequences to capture subtle linguistic nuances. To further
enrich the feature set, five distinct stylistic numeric indicators are included: reply length, total word
count, frequency of exclamation marks, prevalence of question marks, and the ratio of uppercase
letters. These metrics provide valuable insights into the text’s stylistic characteristics.

TextFeatures

Classification
Models

+ Logistic Regression
Character-level + Linear SVM
TF-IDF + Multinomial Naive
Bayes

(3-5 character n-gra7m5)) S R e Forast

Stylistic Indicators

~reply length Combined

s word cotint Features

- exclamation frequency 5 s
- question-mark frequen single sparse matrix
- uppercase ratio

Accuracy
« Precision (sarcastic)

« Recall (sarcastic)
« F1-score (sarcastic)

Figure 1. The Architecture of a Sarcasm-detection Pipeline

All these components are skillfully concatenated into a single sparse matrix, forming a
comprehensive representation of the data. Leveraging this unified feature set, four classical machine
learning models—Tlogistic regression, a linear Support Vector Machine (SVM), multinomial Naive

Subrata Karmaker (Sarcasm Detection on Reddit Using Classical Machine Learning and Feature Engineering)

ISSN 2722-2039 International Journal of Data Science 87
Vol. 6, No. 2, December 2025, pp. 85-93

Bayes, and a random forest—are trained. To evaluate model performance, key metrics such as
accuracy, precision, recall, and F1-score are employed, with a focus on the detection of the sarcastic
class. This multifaceted approach not only enhances model robustness but also improves the quality
of insights derived from the analysis.

2.1 Feature Engineering

Text inputs were transformed using a custom TextFeatures preprocessing module that integrates
lexical, subword, and stylistic information into a unified representation. The module produced three
complementary feature groups.

2.1.1 Word-Level TF-IDF Features

Word-based term frequency—inverse document frequency (TF-IDF) vectors were computed using
unigrams and bigrams. These features capture semantic and contextual patterns associated with
sarcastic expression, including common phrase-level constructions and sentiment inversions.

2.1.2 Character-Level TF-IDF Features

To model subword structure and orthographic variation, character n-gram TF-IDF features were
extracted using 3-5 character sequences. This representation is effective for capturing elongated
spellings, punctuation patterns, and other stylistic markers frequently present in sarcastic text.

2.1.3 Stylistic Indicators

Five handcrafted numeric features were included to represent surface-level stylistic tendencies:

e Total reply length,

e Word count,

» Frequency of exclamation marks,

» Frequency of question marks, and

« Ratio of uppercase characters to total characters.
These indicators provide additional cues related to emphasis, rhetorical tone, and expressive
intensity. All feature groups were concatenated into a single high-dimensional sparse matrix, which
served as the shared input representation for all downstream models.

2.2 Classification Models

Four classical machine-learning algorithms were trained on the unified feature representation:

» Logistic Regression (L2-regularized),

» Linear Support Vector Machine (SVM),

e Multinomial Naive Bayes, and

+ Random Forest Classifier.
These models were selected to provide a diverse set of linear and nonlinear baselines commonly used
in text classification tasks. Hyperparameters were tuned using grid search on the training set.

2.3 Evaluation

Model performance was assessed on a held-out test set. Standard classification metrics were
computed, including overall accuracy and class-specific precision, recall, and F1-score. Because
sarcasm detection is often class-imbalanced, with the sarcastic class typically more challenging to
identify, the evaluation emphasized precision, recall, and F1-score for the sarcastic category.

3. Results and Discussion

Table 1 summarizes the performance. Logistic regression and Naive Bayes perform similarly well,
each reaching an Fl-score of approximately 0.57. The linear SVM performs slightly worse, while
the random forest shows no significant advantage over the linear models.

Subrata Karmaker (Sarcasm Detection on Reddit Using Classical Machine Learning and Feature Engineering)

88 International Journal of Data Science

Vol. 6, No. 2, December 2025, pp. 85-93
[mm—

ISSN 2722-2039

Table 1. Performance of classical models on the SARC 2.0 balanced subset (100k sample).

Model Accuracy Precision Recall Fi

Logistic Regression 0.564 0.564 0.574 0.569
Linear SVM 0.541 0.542 0.534 0.538
Naive Bayes 0.565 0.566 0.574 0.569
Random Forest 0.558 0.558 0.568 0.563

Figures 1 and 2 display the confusion matrix and ROC curve for the Naive Bayes classifier. The

ROC curve achieves an AUC of 0.59.

Confusion Matrix (Naive Bayes)

-0.50
-0.25 3600
0.00 5400
_ 025 5200
7]
"
o 050 + 5000
2
'_
0.75 - 4800
00 - 4600
1.25
- 4400
1.50 L

-0.5 0.0 0.5 1.0 1.5
Predicted label

Figure 2. Confusion matrix for the Naive Bayes classifier

ROC Curve (Naive Bayes)

104 — nNaive Bayes (AUC = 0.592)
——- Random Baseline ,

True Positive Rate

T T T

T T
0.0 0.2 0.4 0.6 0.8
False Positive Rate

1.0

Figure 3. ROC curve for Naive Bayes (solid line) and random baseline (dashed).

The findings reveal that classical machine learning methods, even in the absence of contextual
information, can effectively identify distinct stylistic patterns linked to sarcasm. While the
performance may be somewhat modest, this is to be anticipated, as many sarcastic remarks hinge on
contrasts with earlier communications—contextual nuances that the model lacks access to.
Nonetheless, the approach's reproducibility and transparency provide a significant benchmark for
foundational work. The TF-IDF representations encapsulate lexical tendencies, while the numeric
features highlight exaggerated or atypical stylistic patterns frequently observed in sarcastic
exchanges. This interplay between lexical and numeric dimensions enriches our understanding of

sarcasm detection in text.

Subrata Karmaker (Sarcasm Detection on Reddit Using Classical Machine Learning and Feature Engineering)

ISSN 2722-2039 International Journal of Data Science 89
Vol. 6, No. 2, December 2025, pp. 85-93

4. Conclusion

This research examines the challenge of sarcasm detection by employing traditional machine
learning techniques and carefully engineered features. Using a substantial dataset from Reddit, the
study employs a context-free framework, enabling a focused examination of the problem. The
findings reveal that both logistic regression and Naive Bayes models yield F1 scores hovering around
0.57. While these results fall short of providing a definitive solution to the complexities of sarcasm
detection, they establish a significant baseline for future investigations. Researchers can build upon
these findings by integrating contextual elements or exploring advanced neural embeddings.
Additionally, to promote transparency and facilitate further exploration, the complete
implementation of this study is made available for reproducibility.

Acknowledgements

I thank the authors of the SARC dataset for making their data available to the research community.

References

[1] A. Joshi, P. Bhattacharyya, and M. J. Carman, "Automatic sarcasm detection: A survey," ACM Comput. Surv., vol.
50, no. 5, pp. 1-22, Sep. 2017, doi: 10.1145/3124420.

[2] D. Ghosh, A. Guo, and S. Muresan, "Analyzing sarcasm in conversation context," Comput. Linguistics, vol. 43, no.
4, pp. 761-794, Dec. 2017, doi: 10.1162/coli_a_00336.

[3] S. Farabi, T. Ranasinghe, D. Kanojia, Y. Kong, and M. Zampieri, "A survey of multimodal sarcasm detection,"
in Proc. 33rd Int. Joint Conf. Artif. Intell. (IJCAI), Macao, China, Aug. 2024, pp. 8020-8028,
doi:10.24963/ijcai.2024/887.

[4] M. Khodak, N. Saunshi, and K. Vodrahalli, "A large self-annotated corpus for sarcasm," arXiv:1704.05579, 2018.
[Online]. Available: https://arxiv.org/abs/1704.05579.

Appendix

Python Code

from typing import List, Optional

from pathlib import Path

import numpy as np

import pandas as pd

from scipy.sparse import hstack, csr_matrix

from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression

from sklearn.naive_bayes import MultinomialNB

from sklearn.svm import LinearSVC

from sklearn.ensemble import RandomForestClassifier

from sklearn.pipeline import Pipeline

from sklearn.model_selection import train_test_split

from sklearn.metrics import (

accuracy_score,

classification_report,

confusion_matrix,

roc_auc_score,

roc_curve,

)

import matplotlib.pyplot as plt

class TextFeatures (BaseEstimator, TransformerMixin) :

nwn

Custom feature engineering transformer for sarcasm detection.
It combines:- word-level TF-IDF features- character-level TF-IDF features- simple
numeric stylistic features

nwn

def __init__ (

self,

Subrata Karmaker (Sarcasm Detection on Reddit Using Classical Machine Learning and Feature Engineering)

90 International Journal of Data Science ISSN 2722-2039
Vol. 6, No. 2, December 2025, pp. 85-93
[

max_features_word: int 20000,
max_features_char: int = 10000,
ngram_range_word= (1, 2),
ngram_range_char=(3, 5),

lowercase: bool = True,

stop_words: Optional[str] = "english",

) :

self.max_features_word = max_features_word
self.max_features_char = max_features_char

self.ngram_range_word = ngram_range_word

self.ngram_range_char = ngram_range_char

self.lowercase = lowercase

self.stop_words = stop_words

self.word_vectorizer_: Optional[TfidfVectorizer] = None

self.char_vectorizer_: Optional[TfidfVectorizer] = None

def _basic_numeric_features(self, texts: List[str])-> np.

ndarray:

nww

Compute simple numeric features:- length in characters—- number of words-

exclamation marks per word- question marks per word- uppercase ratio
nww

lengths = np.array([len(t) for t in texts], dtype=float)

num_words = np.array([len(t.split()) for t in texts], dtype=

float) + 1.0

num_exclam np.array ([t.count ("!") for t in texts], dtype=
float)

num_question = np.array([t.count ("?") for t in texts], dtype
=float)

num_upper = np.array (

[sum(l for ch in t if ch.isupper()) for t in texts],
dtype=float,

)

exclam_per_word = num_exclam / num_words

question_per_word = num_qguestion / num_words

upper_ratio = num_upper / lengths.clip(min=1.0)

features = np.vstack(

[lengths, num_words, exclam_per_word, question_per_word,
upper_ratio]

). T

return features

def fit(self, X, y=None):

nww

Fit word and character TF-IDF vectorizers on the training
texts.

nww

if isinstance (X, pd.Series):

texts = X.astype(str) .tolist ()

elif isinstance (X, (list, np.ndarray)):

texts = [str(t) for t in X]

else:

raise ValueError (f"Unsupported input type for
TextFeatures: {type(X)}")
self.word_vectorizer_ = TfidfVectorizer (
max_features=self.max_features_word,
ngram_range=self.ngram_range_word,
lowercase=self.lowercase,
stop_words=self.stop_words,
sublinear_tf=True,

)

self.char_vectorizer_ = TfidfVectorizer (
max_features=self.max_features_char,
ngram_range=self.ngram_range_char,
lowercase=self.lowercase,

analyzer="char",

sublinear_tf=True,

)

Subrata Karmaker (Sarcasm Detection on Reddit Using Classical Machine Learning and Feature Engineering)

ISSN 2722-2039 International Journal of Data Science 91
Vol. 6, No. 2, December 2025, pp. 85-93

self.word_vectorizer_ .fit (texts)
self.char_vectorizer_.fit (texts)
return self

def transform(self, X):

Transform texts into a combined sparse feature matrix.
nmnww

if isinstance (X, pd.Series):

texts = X.astype(str) .tolist ()

elif isinstance (X, (list, np.ndarray)):

texts = [str(t) for t in X]

else:

raise ValueError (f"Unsupported input type for
TextFeatures: {type(X)}")

word_tfidf = self.word_vectorizer_ .transform(texts)
char_tfidf = self.char_vectorizer_.transform(texts)
dense_feats = self._basic_numeric_features (texts)
dense_sparse = csr_matrix(dense_feats.astype (float))
return hstack ([word_tfidf, char_tfidf, dense_sparse])
def make_logreg_model ()-> Pipeline:

Logistic regression pipeline.
nwn

return Pipeline (

[
("features", TextFeatures()),

("clf", LogisticRegression(max_iter=500, n_jobs=-1)),
]

)
def make_svm_model () —> Pipeline:
nwn

Linear SVM pipeline.

return Pipeline (

[
("features", TextFeatures()),

("clf", LinearSVC (max_iter=5000, dual="auto")),
1

)

def make_nb_model () —> Pipeline:

nww

Multinomial Naive Bayes pipeline.

return Pipeline (

[

("features", TextFeatures()),
("clf", MultinomialNB()),
1

)
def make_rf_model ()-> Pipeline:

Random Forest pipeline.

nwn

return Pipeline (

[

("features", TextFeatures()),
("clf", RandomForestClassifier (
n_estimators=150,
max_depth=None,

n_jobs=-1,

random_state=42,

))

1

)

def get_all_models() :

nww

Return a dictionary of all models to be evaluated.

Subrata Karmaker (Sarcasm Detection on Reddit Using Classical Machine Learning and Feature Engineering)

92 International Journal of Data Science ISSN 2722-2039
Vol. 6, No. 2, December 2025, pp. 85-93
[mm—

nww

return {

"logreg": make_logreg_model (),
"svm": make_svm_model (),
"nb": make_nb_model (),
"rf": make_rf model (),

}
#
Main experiment script
#
RANDOM_STATE = 42

data_path = Path("train-balanced.csv.bz2")

Load the balanced SARC subset

df = pd.read_csv(

data_path,

compression="bz2",

sep=" \t",

header=None,

engine="python",

quoting=3,

on_bad_lines="skip",

)

Subsample for computational efficiency

df_small = df.sample(n=100000, random_state=RANDOM_STATE)

Label and reply text

y = df_small.iloc[:, 0].astype(int)

X = df_small.iloc[:, 9].astype(str)

Remove empty / whitespace-only texts

mask = X.str.strip() .astype (bool)

X = X[mask]

y = yl[mask]

Stratified train-test split

X_train, X_test, y_train, y_test = train_test_split(

Xl

Y

test_size=0.2,

random_state=RANDOM_STATE,

stratify=y,

)

models = get_all_models ()

metrics_summary = {}

Train and evaluate each model

for name, model in models.items{() :

print ("=" * 60)

print (f"Training model: {name}")

model.fit (X_train, y_train)

y_pred = model.predict (X_test)

acc = accuracy_score(y_test, y_pred)

report_dict = classification_report (

y_test, y_pred, digits=3, output_dict=True

)

Print detailed classification report

print ("Accuracy:", acc)

print (classification_report (y_test, y_pred, digits=3))

Store key metrics for the sarcastic class (label "1")
metrics_summary[name] = {

"accuracy": acc,

"precision_sarcastic": report_dict["1"]["precision"],
"recall_sarcastic": report_dict["1"]["recall"],

"fl _sarcastic": report_dict["1"]["fl-score"],

}

Summary table for all models

metrics_df = pd.DataFrame (metrics_summary) .T

print ("\nSummary metrics:")

print (metrics_df)

========== Confusion Matrix & ROC Curve for Naive Bayes ==========
nb_model = models["nb"]

Subrata Karmaker (Sarcasm Detection on Reddit Using Classical Machine Learning and Feature Engineering)

ISSN 2722-2039 International Journal of Data Science
Vol. 6, No. 2, December 2025, pp. 85-93

y_pred_nb = nb_model.predict (X_test)

Confusion matrix

cm = confusion_matrix(y_test, y_pred_nb)

print ("\nConfusion matrix (Naive Bayes):")

print (cm)

plt.figure(figsize=(5, 4))

plt.imshow(cm, cmap="Blues")

plt.title("Confusion Matrix (Naive Bayes)")

plt.xlabel ("Predicted label")

plt.ylabel ("True label")

plt.colorbar ()

Add counts inside the cells

for i in range(cm.shape[0]) :

for j in range (cm.shape[l]):

plt.text(

j, i, eml[i, 31,

ha="center",

va="center",

color="white" if cm[i, j] > cm.max() / 2.0 else "black",
)

plt.tight_layout ()

plt.show ()

plt.savefig("confusion_matrix_nb.png", dpi=300, bbox_inches="tight")
plt.close ()

ROC curve for Naive Bayes

y_score_nb = nb_model.predict_proba(X_test)[:, 1]

fpr, tpr, _ = roc_curve(y_test, y_score_nb)

auc = roc_auc_score(y_test, y_score_nb)

print (£"\nAUC (Naive Bayes): {auc:.3f}")
plt.figure(figsize=(5, 4))

Model ROC line

plt.plot (fpr, tpr, label=f"Naive Bayes (AUC = {auc:.3f})", linewidth
=2)

Random baseline line

plt.plot ([0, 11, [0, 1], "--", color="gray", label="Random baseline"
)

plt.xlabel ("False Positive Rate")

plt.ylabel ("True Positive Rate")

plt.title ("ROC Curve (Naive Bayes)")

plt.legend()

plt.tight_layout ()

plt.show()

plt.savefig("roc_curve_nb.png", dpi=300, bbox_inches="tight")
plt.close ()

Subrata Karmaker (Sarcasm Detection on Reddit Using Classical Machine Learning and Feature Engineering)

