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1. Introduction  

Sarcasm is pervasive on platforms such as Reddit, where people use irony to express humor, criticism 

or subtle disagreement. Humans typically recognize sarcasm with little effort, drawing on tone, 

background knowledge, and the surrounding conversation. Automated systems, however, see only 

the raw text, and a sentence such as “Great job.” may be interpreted as sincere or sarcastic depending 

on the unseen context. This ambiguity poses a substantial challenge for natural language processing 

(NLP) models. While modern sarcasm detection research frequently relies on deep learning and 

transformer-based models, classical machine learning methods remain relevant. They offer 

transparency, lower computational cost and straightforward interpretability. This study examines the 

extent to which predictive performance can be achieved using only classical models and feature 

engineering on reply-only comments from Reddit. The objective is not to compete with state-of-the-

art neural models, but rather to establish a clear, reproducible baseline that highlights what can (and 

cannot) be learned from simple representations of text. 

Early work on sarcasm detection focused heavily on lexical signals and supervised learning methods 

using TF–IDF, sentiment cues, or handcrafted linguistic features. Joshi et al. [1] provide a 

comprehensive survey of these approaches, noting the inherent difficulty of detecting sarcasm from 

surface text alone. Later studies incorporated conversational context, showing clear improvements 

in predictive accuracy. Ghosh et al. [2] demonstrate that using both the reply and the parent comment 

enables models to resolve ambiguities that would otherwise be impossible. More recent research has 
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explored multimodal sarcasm detection, combining text with images, metadata, or social interactions 

[3]. Large pre-trained transformers also dominate modern NLP work. The Self-Annotated Reddit 

Corpus (SARC) introduced by Khodak et al. [4] has become a standard dataset for sarcasm research. 

The present study intentionally adopts a conservative constraint—using only the reply text—to 

evaluate the capabilities of classical baselines. 

The experiments are founded on the carefully curated, balanced subset of SARC 2.0, an intriguing 

dataset that showcases a diverse array of sarcastic and non-sarcastic replies, all marked by the 

insightful contributions of Reddit users. Each entry in this rich collection is comprised of a label 

denoting the nature of the reply, along with pertinent metadata, the original parent comment, and the 

reply itself. To ensure a controlled and conducive environment for analysis, only the reply text and 

the accompanying binary label are utilized in the experiments. From this extensive dataset, a 

subsample of 100,000 instances is meticulously drawn, stratified by label to maintain a balanced 

representation of both sarcastic and non-sarcastic comments. Any empty entries or those containing 

only whitespace are systematically excluded to improve data quality. The final refined dataset is then 

divided into two parts: an 80% training set used to train the models and a 20% test set reserved for 

model evaluation. 

2. Materials and Method 

The feature representation is meticulously crafted using a custom transformer, TextFeatures. This 

innovative approach seamlessly integrates several key components to enhance the analysis of text 

data. First, it employs word-level TF-IDF calculations that analyze both unigrams and bigrams, 

capturing the fundamental building blocks of language usage. Additionally, it incorporates character-

level TF-IDF, focusing on 3- to 5-character sequences to capture subtle linguistic nuances. To further 

enrich the feature set, five distinct stylistic numeric indicators are included: reply length, total word 

count, frequency of exclamation marks, prevalence of question marks, and the ratio of uppercase 

letters. These metrics provide valuable insights into the text’s stylistic characteristics. 

 

Figure 1. The Architecture of a Sarcasm‑detection Pipeline 

All these components are skillfully concatenated into a single sparse matrix, forming a 

comprehensive representation of the data. Leveraging this unified feature set, four classical machine 

learning models—logistic regression, a linear Support Vector Machine (SVM), multinomial Naive 
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Bayes, and a random forest—are trained. To evaluate model performance, key metrics such as 

accuracy, precision, recall, and F1-score are employed, with a focus on the detection of the sarcastic 

class. This multifaceted approach not only enhances model robustness but also improves the quality 

of insights derived from the analysis. 

2.1 Feature Engineering 

Text inputs were transformed using a custom TextFeatures preprocessing module that integrates 

lexical, subword, and stylistic information into a unified representation. The module produced three 

complementary feature groups. 

2.1.1 Word-Level TF–IDF Features 

Word-based term frequency–inverse document frequency (TF–IDF) vectors were computed using 

unigrams and bigrams. These features capture semantic and contextual patterns associated with 

sarcastic expression, including common phrase-level constructions and sentiment inversions. 

2.1.2 Character-Level TF–IDF Features 

To model subword structure and orthographic variation, character n-gram TF–IDF features were 

extracted using 3–5 character sequences. This representation is effective for capturing elongated 

spellings, punctuation patterns, and other stylistic markers frequently present in sarcastic text. 

2.1.3 Stylistic Indicators 

Five handcrafted numeric features were included to represent surface-level stylistic tendencies: 

• Total reply length, 

• Word count, 

• Frequency of exclamation marks, 

• Frequency of question marks, and 

• Ratio of uppercase characters to total characters. 

These indicators provide additional cues related to emphasis, rhetorical tone, and expressive 

intensity. All feature groups were concatenated into a single high-dimensional sparse matrix, which 

served as the shared input representation for all downstream models. 

2.2 Classification Models 

Four classical machine-learning algorithms were trained on the unified feature representation: 

• Logistic Regression (L2-regularized), 

• Linear Support Vector Machine (SVM), 

• Multinomial Naive Bayes, and 

• Random Forest Classifier. 

These models were selected to provide a diverse set of linear and nonlinear baselines commonly used 

in text classification tasks. Hyperparameters were tuned using grid search on the training set. 

2.3 Evaluation 

Model performance was assessed on a held-out test set. Standard classification metrics were 

computed, including overall accuracy and class-specific precision, recall, and F1-score. Because 

sarcasm detection is often class-imbalanced, with the sarcastic class typically more challenging to 

identify, the evaluation emphasized precision, recall, and F1-score for the sarcastic category. 

3. Results and Discussion 

Table 1 summarizes the performance. Logistic regression and Naive Bayes perform similarly well, 

each reaching an F1-score of approximately 0.57. The linear SVM performs slightly worse, while 

the random forest shows no significant advantage over the linear models. 
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Table 1. Performance of classical models on the SARC 2.0 balanced subset (100k sample). 

Model Accuracy Precision Recall F1 

Logistic Regression 0.564 0.564 0.574 0.569 

Linear SVM 0.541 0.542 0.534 0.538 

Naive Bayes 0.565 0.566 0.574 0.569 

Random Forest 0.558 0.558 0.568 0.563 

 

Figures 1 and 2 display the confusion matrix and ROC curve for the Naive Bayes classifier. The 

ROC curve achieves an AUC of 0.59. 

 

Figure 2. Confusion matrix for the Naive Bayes classifier 

 

 

Figure 3. ROC curve for Naive Bayes (solid line) and random baseline (dashed). 

The findings reveal that classical machine learning methods, even in the absence of contextual 

information, can effectively identify distinct stylistic patterns linked to sarcasm. While the 

performance may be somewhat modest, this is to be anticipated, as many sarcastic remarks hinge on 

contrasts with earlier communications—contextual nuances that the model lacks access to. 

Nonetheless, the approach's reproducibility and transparency provide a significant benchmark for 

foundational work. The TF–IDF representations encapsulate lexical tendencies, while the numeric 

features highlight exaggerated or atypical stylistic patterns frequently observed in sarcastic 

exchanges. This interplay between lexical and numeric dimensions enriches our understanding of 

sarcasm detection in text. 
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4. Conclusion 

This research examines the challenge of sarcasm detection by employing traditional machine 

learning techniques and carefully engineered features. Using a substantial dataset from Reddit, the 

study employs a context-free framework, enabling a focused examination of the problem. The 

findings reveal that both logistic regression and Naive Bayes models yield F1 scores hovering around 

0.57. While these results fall short of providing a definitive solution to the complexities of sarcasm 

detection, they establish a significant baseline for future investigations. Researchers can build upon 

these findings by integrating contextual elements or exploring advanced neural embeddings. 

Additionally, to promote transparency and facilitate further exploration, the complete 

implementation of this study is made available for reproducibility. 
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Appendix  

Python Code 

from typing import List, Optional 

from pathlib import Path 

import numpy as np 

import pandas as pd 

from scipy.sparse import hstack, csr_matrix 

from sklearn.base import BaseEstimator, TransformerMixin 

from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.linear_model import LogisticRegression 

from sklearn.naive_bayes import MultinomialNB 

from sklearn.svm import LinearSVC 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.pipeline import Pipeline 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import ( 

accuracy_score, 

classification_report, 

confusion_matrix, 

roc_auc_score, 

roc_curve, 

) 

import matplotlib.pyplot as plt 

class TextFeatures(BaseEstimator, TransformerMixin): 

""" 

Custom feature engineering transformer for sarcasm detection. 

It combines:- word-level TF-IDF features- character-level TF-IDF features- simple 

numeric stylistic features 

""" 

def __init__( 

self, 
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max_features_word: int = 20000, 

max_features_char: int = 10000, 

ngram_range_word=(1, 2), 

ngram_range_char=(3, 5), 

lowercase: bool = True, 

stop_words: Optional[str] = "english", 

): 

self.max_features_word = max_features_word 

self.max_features_char = max_features_char 

self.ngram_range_word = ngram_range_word 

self.ngram_range_char = ngram_range_char 

self.lowercase = lowercase 

self.stop_words = stop_words 

self.word_vectorizer_: Optional[TfidfVectorizer] = None 

self.char_vectorizer_: Optional[TfidfVectorizer] = None 

def _basic_numeric_features(self, texts: List[str])-> np. 

ndarray: 

""" 

Compute simple numeric features:- length in characters- number of words- 

exclamation marks per word- question marks per word- uppercase ratio 

""" 

lengths = np.array([len(t) for t in texts], dtype=float) 

num_words = np.array([len(t.split()) for t in texts], dtype= 

float) + 1.0 

num_exclam = np.array([t.count("!") for t in texts], dtype= 

float) 

num_question = np.array([t.count("?") for t in texts], dtype 

=float) 

num_upper = np.array( 

[sum(1 for ch in t if ch.isupper()) for t in texts], 

dtype=float, 

) 

 

exclam_per_word = num_exclam / num_words 

question_per_word = num_question / num_words 

upper_ratio = num_upper / lengths.clip(min=1.0) 

features = np.vstack( 

[lengths, num_words, exclam_per_word, question_per_word, 

upper_ratio] 

).T 

return features 

def fit(self, X, y=None): 

""" 

Fit word and character TF-IDF vectorizers on the training 

texts. 

""" 

if isinstance(X, pd.Series): 

texts = X.astype(str).tolist() 

elif isinstance(X, (list, np.ndarray)): 

texts = [str(t) for t in X] 

else: 

raise ValueError(f"Unsupported input type for 

TextFeatures: {type(X)}") 

self.word_vectorizer_ = TfidfVectorizer( 

max_features=self.max_features_word, 

ngram_range=self.ngram_range_word, 

lowercase=self.lowercase, 

stop_words=self.stop_words, 

sublinear_tf=True, 

) 

self.char_vectorizer_ = TfidfVectorizer( 

max_features=self.max_features_char, 

ngram_range=self.ngram_range_char, 

lowercase=self.lowercase, 

analyzer="char", 

sublinear_tf=True, 

) 
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self.word_vectorizer_.fit(texts) 

self.char_vectorizer_.fit(texts) 

return self 

def transform(self, X): 

""" 

Transform texts into a combined sparse feature matrix. 

""" 

if isinstance(X, pd.Series): 

texts = X.astype(str).tolist() 

elif isinstance(X, (list, np.ndarray)): 

texts = [str(t) for t in X] 

else: 

raise ValueError(f"Unsupported input type for 

TextFeatures: {type(X)}") 

word_tfidf = self.word_vectorizer_.transform(texts) 

char_tfidf = self.char_vectorizer_.transform(texts) 

dense_feats = self._basic_numeric_features(texts) 

dense_sparse = csr_matrix(dense_feats.astype(float)) 

return hstack([word_tfidf, char_tfidf, dense_sparse]) 

def make_logreg_model()-> Pipeline: 

""" 

Logistic regression pipeline. 

""" 

return Pipeline( 

[ 

("features", TextFeatures()), 

("clf", LogisticRegression(max_iter=500, n_jobs=-1)), 

] 

) 

def make_svm_model()-> Pipeline: 

""" 

Linear SVM pipeline. 

""" 

return Pipeline( 

[ 

("features", TextFeatures()), 

("clf", LinearSVC(max_iter=5000, dual="auto")), 

] 

) 

def make_nb_model()-> Pipeline: 

""" 

Multinomial Naive Bayes pipeline. 

""" 

return Pipeline( 

[ 

("features", TextFeatures()), 

("clf", MultinomialNB()), 

] 

) 

def make_rf_model()-> Pipeline: 

""" 

Random Forest pipeline. 

""" 

return Pipeline( 

[ 

("features", TextFeatures()), 

("clf", RandomForestClassifier( 

n_estimators=150, 

max_depth=None, 

n_jobs=-1, 

random_state=42, 

)), 

] 

) 

def get_all_models(): 

""" 

Return a dictionary of all models to be evaluated. 
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""" 

return { 

"logreg": make_logreg_model(), 

"svm": make_svm_model(), 

"nb": make_nb_model(), 

"rf": make_rf_model(), 

} 

# ======================= 

# Main experiment script 

# ======================= 

RANDOM_STATE = 42 

data_path = Path("train-balanced.csv.bz2") 

# Load the balanced SARC subset 

df = pd.read_csv( 

data_path, 

compression="bz2", 

sep="\t", 

header=None, 

engine="python", 

quoting=3, 

on_bad_lines="skip", 

) 

# Subsample for computational efficiency 

df_small = df.sample(n=100000, random_state=RANDOM_STATE) 

# Label and reply text 

y = df_small.iloc[:, 0].astype(int) 

X = df_small.iloc[:, 9].astype(str) 

# Remove empty / whitespace-only texts 

mask = X.str.strip().astype(bool) 

X = X[mask] 

y = y[mask] 

# Stratified train-test split 

X_train, X_test, y_train, y_test = train_test_split( 

X, 

y, 

test_size=0.2, 

random_state=RANDOM_STATE, 

stratify=y, 

) 

models = get_all_models() 

metrics_summary = {} 

# Train and evaluate each model 

for name, model in models.items(): 

print("=" * 60) 

print(f"Training model: {name}") 

model.fit(X_train, y_train) 

y_pred = model.predict(X_test) 

acc = accuracy_score(y_test, y_pred) 

report_dict = classification_report( 

y_test, y_pred, digits=3, output_dict=True 

) 

# Print detailed classification report 

print("Accuracy:", acc) 

print(classification_report(y_test, y_pred, digits=3)) 

# Store key metrics for the sarcastic class (label "1") 

metrics_summary[name] = { 

"accuracy": acc, 

"precision_sarcastic": report_dict["1"]["precision"], 

"recall_sarcastic": report_dict["1"]["recall"], 

"f1_sarcastic": report_dict["1"]["f1-score"], 

} 

# Summary table for all models 

metrics_df = pd.DataFrame(metrics_summary).T 

print("\nSummary metrics:") 

print(metrics_df) 

# ========== Confusion Matrix & ROC Curve for Naive Bayes ========== 

nb_model = models["nb"] 
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y_pred_nb = nb_model.predict(X_test) 

# Confusion matrix 

cm = confusion_matrix(y_test, y_pred_nb) 

print("\nConfusion matrix (Naive Bayes):") 

print(cm) 

plt.figure(figsize=(5, 4)) 

plt.imshow(cm, cmap="Blues") 

plt.title("Confusion Matrix (Naive Bayes)") 

plt.xlabel("Predicted label") 

plt.ylabel("True label") 

plt.colorbar() 

# Add counts inside the cells 

for i in range(cm.shape[0]): 

for j in range(cm.shape[1]): 

plt.text( 

j, i, cm[i, j], 

ha="center", 

va="center", 

color="white" if cm[i, j] > cm.max() / 2.0 else "black", 

) 

plt.tight_layout() 

plt.show() 

plt.savefig("confusion_matrix_nb.png", dpi=300, bbox_inches="tight") 

plt.close() 

# ROC curve for Naive Bayes 

y_score_nb = nb_model.predict_proba(X_test)[:, 1] 

fpr, tpr, _ = roc_curve(y_test, y_score_nb) 

auc = roc_auc_score(y_test, y_score_nb) 

print(f"\nAUC (Naive Bayes): {auc:.3f}") 

plt.figure(figsize=(5, 4)) 

# Model ROC line 

plt.plot(fpr, tpr, label=f"Naive Bayes (AUC = {auc:.3f})", linewidth 

=2) 

# Random baseline line 

plt.plot([0, 1], [0, 1], "--", color="gray", label="Random baseline" 

) 

plt.xlabel("False Positive Rate") 

plt.ylabel("True Positive Rate") 

plt.title("ROC Curve (Naive Bayes)") 

plt.legend() 

plt.tight_layout() 

plt.show() 

plt.savefig("roc_curve_nb.png", dpi=300, bbox_inches="tight") 

plt.close() 


